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ABSTRACT
The research of optimal control in residential build-
ing clusters is approached from different disciplines:
building simulation and control engineering. Control
engineers focus mainly on the research and develop-
ment of sophisticated optimal control strategies com-
bined with high-level simulation tools but less accurate
building models for fast prototyping of new control
strategies. On the other hand, building simulation ex-
perts develop detailed building models which provide
realistic and accurate building representations, how-
ever often in a simulation environment which is less
suited for control.
This paper proposes several methodologies to extend
building and cluster models in Modelica, an object-
oriented modelling and simulation language, with a
Python control layer in order to bridge the gap between
both disciplines. Co-simulation tries to leverage the
advantages of both approaches by enabling the combi-
nation of both in an integrated simulation and keeping
the development of the building models and control
strategies separate. Control algorithms developed in
Python can then easily be tested on detailed models
in Modelica. As such, the Modelica simulation model
is used as an emulator or virtual test bed. These inte-
grated co-simulations can provide new insights in the
behavior of building clusters when using sophisticated
control algorithms.

INTRODUCTION
Background and motivation
In the EU, building energy use accounted for 37% of
the total energy use in 2004 (Pérez-Lombard, Ortiz,
and Pout 2008) of which 50% is used by the heat-
ing, ventilation and air-conditioning (HVAC) installa-
tion of the building (Conti 2012). Furthermore, the in-
creased integration of wind and solar energy imposes
extra challenges for the power system due to the high
intermittency of electricity production. The grid might
face severe stability issues if corrective actions that can
counteract this intermittency are not taken (Makarov et
al. 2009). Optimal control strategies for the control of
HVAC systems can be used to lower the energy use
of buildings and are able to provide the power system
with flexibility of the energy use which can be part of
the solution to incorporate high amounts of renewable
energy resources. Collaboration between the control
group and the thermal systems group is necessary to
obtain efficient control strategies and accurate results.

The control group focuses on the development of so-
phisticated optimal control schemes and algorithms
but uses simple, low-order building models which rep-
resent reality in a simplified way (Koch 2012; Urban
and Vermeulen 2011; Morvaj, Jurisic, and Holjevac
2013). These simple models allow the control group to
rapidly develop and research new control or optimiza-
tion algorithms for optimal control in buildings but
give a simplified representation of reality. The build-
ing physics and thermal systems group focuses on ac-
curate and realistic building models to study the exact
potential and impact of control techniques but primar-
ily uses local control algorithms without communica-
tion between dwellings or simple rule-based strategies
for cluster control (Baetens et al. 2012; De Coninck
et al. 2014; Reynders, Nuytten, and Saelens 2013).
Software environments that are able to give accurate
results of the building response to such control algo-
rithms are becoming a necessity.
This paper proposes several methodologies to couple
Python with Modelica and shows the importance of
this tool coupling by implementing a central model
predictive control (MPC) distributed by a multi-agent
control system in Python on a residential neighbor-
hood in Modelica. The results are promising: the
test implementation shows improved control perfor-
mance compared to rule-based control using a simple
aggregated controller model for the MPC. Using this
methodology, more complex and sophisticated MPC
models could easily be implemented. Besides illustrat-
ing the methodology for interfacing both disciplines,
this case study allows identifying the shortcomings
and potential future work related to current simulation
tools (Aertgeerts 2014).

Previous research
Co-simulation
Some efforts have been made to combine the re-
search of control algorithms with accurate building
models. First, the EnergyPlus (Crawley et al. 2001)
framework provides accurate building models and can
be extended with different toolboxes that allow co-
simulation of control and building models (Wetter
2011). However, it focuses on the control of a single
building and the control algorithms are often written in
Matlab which is not freely available.Second, the Mo-
saik framework looks promising due to its wide scope
and goal to provide models for all fields related to the
Smart Grid in a co-simulation framework but remains
in a conceptual phase for now (Schütte, Scherfke, and
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Sonnenschein 2012). Third, the BCVTB provides a
software environment that allows users to couple dif-
ferent simulation programs for co-simulation (Wen
2011) and can be a good alternative to the methodol-
ogy proposed here but adds unnecessary complexity
for control applications.

DSM of a small neighborhood
The proof of concept presented here is an extension of
the work done by De Coninck et al. 2014 and com-
pares rule-based control (RBC) strategies with a cen-
tral model predictive control (MPC) of a neighbor-
hood using a market-based multi-agent system (MAS)
control scheme in a Python-Modelica co-simulation
environment. The neighborhood suffers from over-
voltages during periods characterized by high solar ra-
diation due to the high penetration of PV systems re-
sulting in curtailing losses. The inverters of the PV
prevent these over-voltages by disconnecting the PV
from the local feeder when this occurs. Following EN
50438:2007 the voltage limit is set at 253 V which is
10% over-voltage of the nominal voltage of 230 V at
the local feeder. A more extensive literature review of
DSM of building clusters is given by Aertgeerts 2014.

EXPERIMENT AND SIMULATION
Coupling Modelica with Python
In co-simulation, communication between both envi-
ronments is mandatory and often the bottleneck in
terms of simulation speed due to the overhead present
in the communication. In this paper we assume a fixed
communication step size. A Modelica environment
simulates the model for this duration after which a
control signal is computed in Python based on the cur-
rent state of the model. This control signal is then fed
back into the model and a new simulation is started.
The smaller the communication step size, the more
Modelica and Python need to communicate, increas-
ing the overhead in the simulation.
We explore three options for a simple but effective
coupling between Modelica and Python:

1. FMU: Python is used as the master and the Mod-
elica model is compiled to a Co-Simulation FMU
using the CVOde solver which can be run in
Python.

2. Dymosim: Python is used as the master and the
Modelica model is run as a dymola executable
called dymosim.exe in a new external process after
every simulation step.

3. C-function: The Modelica simulator is used as the
master and a python function can be run by call-
ing an external C-function which spawns a new
Python interpreter after every simulation step.

The functional mockup interface (FMI) is a tool inde-
pendent standard for the exchange of dynamic models
and co-simulation (Blochwitz et al. 2011). Modelica
models, such as the considered neighborhood, can be

exported to a Functional Mockup Unit (FMU) using
the FMI standard. FMUs have the advantage to be tool
independent and can be run by any software that sup-
ports the FMI standard (for example PyFMI by JMod-
elica.org in Python). Modelica parameters such as sen-
sors and control variables of modeled devices can then
be read and set easily using a Python FMU object, cre-
ating minimum overhead. However, it is very expen-
sive to use the high performant Dymola solvers in a
dedicated co-simulation FMU making the current Dy-
mola generated FMUs less robust then Dymola. Fur-
thermore, it is not always possible to compile complex
models to an FMU.
The Dymosim method uses the commercial program
Dymola to export the Modelica model as an executable
file called dymosim which can run on a Windows or
Linux environment (Dynasim 2013). This executable
file is the same as used by Dymola and can use the high
performant solvers without extra cost making it ex-
tremely robust. The Modelica parameters are read and
set by reading and writing a text file. For large mod-
els such as the neighborhood investigated in our study,
this text file can become large (e.g. 55 MB) and cre-
ates a large overhead every communication step. Dy-
mosims can only be exchanged across machines with
a normal Dymola license which is needed to run the
executable or on any machine when the dymosim is
exported using the binary model export license.
By using an external C-function to call a Python func-
tion from within the Modelica simulator, all benefits
of the optimized Modelica simulator can be exploited
(e.g. the high performant Dymola solvers). The tech-
nique used here is implemented in the Modelica build-
ings library by Wetter et al. 2014. The models can eas-
ily be exchanged across machines as simple Modelica
files and run in any Modelica simulator.

Method Python Modelica

FMU Master Separate process
Dymosim Master .txt file
C-function file Master

Table 1: State persistent methods for the different co-
simulation methods.

When doing co-simulation, the persistence of state of
the program in some form is an important feature in
order for both environments to know where to start the
next simulation or control cycle. For Modelica, it is
important to know where to start the next simulation
to ensure continuity while a sophisticated control in
Python might need information of previous optimiza-
tion cycles (e.g. a hysteresis control or a Kalman Fil-
ter). This persistence of state can be handled in dif-
ferent ways such as reading and writing a file or keep-
ing a process alive for the entire duration of the sim-
ulation and plays an important role in the communi-
cation overhead between both software environments.
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Table 1 gives a concise overview of how the different
co-simulation methods persist the state of both Python
and Modelica. Of course, the state is always automat-
ically preserved in the master.
Note that the dymosim and C-function method as im-
plemented by the buildings library are unable to keep
a separate process alive and thus need to read and
write files to persist the state. These files are espe-
cially heavy to persist the simulation (Modelica) state
because they need to incorporate all state information
of the previous simulation cycle whereas the control
state is almost always several orders smaller and thus
more easily read and set creating less overhead. Fur-
thermore, the implementation of the buildings library
needs to start a python interpreter in each call slowing
down the simulation further.
The simulation speed of the three methods is com-
pared using two detailed three zone building structure
models where each zone has a window. Heat is in-
jected into the first model as an input signal where in
the second model an extra layer of complexity is added
by modelling a detailed hydronic heating system. The
single building model consists of 153 states and 3332
equations and the building model with heating system
consists of 160 states and 8857 equations. A simple
hysteresis control between 20◦C and 21◦C is imple-
mented in Python to control the heating input to the
building. The response of both models to a hysteresis
input with a discrete step size of 900 seconds for the
period of one week is shown in figure 1.

Figure 1: Response of a single building model (green)
and building model with heating system (red) to a hys-
teresis control input.

Five different communication step sizes are simulated:
60s, 120s, 900s, 1800s and 3600s. Simulations are
done on a Dell Latitude E6540 with a 2.60GHz pro-
cessor and the CVOde by Hindmarsh et al. 2005 inte-
grator is used for all simulations.

Building model
The open source Modelica modeling environment for
Integrated District Energy Assessment by Simulations

or IDEAS library allows simultaneous transient simu-
lation of thermal and electrical systems at both build-
ing and feeder level (Baetens et al. 2012). The IDEAS
modeling environment is already widely tested and
used in several publications (Baetens et al. 2012;
Reynders, Nuytten, and Saelens 2013; De Coninck et
al. 2014). Baetens et al. frame the IDEAS modeling
and simulation environment well within the broader
picture of simulation environments.
The neighborhood model differs from the models used
for the speed evaluation of the co-simulation tech-
niques but is exactly the same neighborhood as pre-
sented in detail by De Coninck et al. 2014 and quickly
reviewed here. It consists of 33 identical dwellings
connected to a 34-node feeder as standardized by IEEE
(Kersting 2001).

Dwelling
All dwellings are identical and thus use the same
topology. A dwelling consists of one thermal zone,
is designed according to a low-energy standard and
has massive walls and floors. Stochastic variations in
temperature and load are provided by a probabilistic
occupant behavior to counteract the fact that the model
uses 33 identical dwellings.

HVAC System
The heating system of each dwelling consists of floor

heating and a domestic hot water (DHW) system. Heat
is produced by a modulating air-to-water heat pump
(HP) which can consume a variable power. The HP
produces heat for either the floor heating by control-
ling a FH pump or for the DHW tank by controlling
a DHW pump. Cooling is not considered, which is
justified by the Belgian climate.
Hot water is drawn from the DHW storage tank via a
thermostatic mixing valve at 45◦C and new cold wa-
ter is injected into the tank. The HP consumes power
whenever there is a flow through the HP depending on
the temperatures of the input and output flow. Notice
that controlling the HP using a hydraulic pump results
in a variable power consumption of the HP that needs
to be estimated. This research focusses on the control
of the DHW pumps to heat the DHW storage tanks.

Electricity generation
Each dwelling has a building integrated solar panel
(BIPV) system which is sized to cover, on a yearly
basis, the total electricity consumption of the dwelling
as would be present in a modern neighborhood. The
electrical connection between the dwellings BIPV sys-
tem and the feeder is protected by switching-off the
inverter when the voltage reaches a predefined limit
due to a large power production of the BIPV. Pre-
venting this switching behavior is the objective of this
research by using the thermal flexibility of the DHW
storage tanks.
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Occupant behavior
Assessments based on purely deterministic baseline
models do not adequately represent the statistical na-
ture of the impacts of many practical load systems
making stochastic occupant behavior mandatory for
Smart Grid research (Urban and Vermeulen 2011).
Four different types of occupants are modelled which
all show stochastic behavior on household electricity
loads, domestic hot water consumption and presence.

Optimal control algorithm
In this proof of concept, the neighborhood is con-
trolled by a market-based multi-agent system which
uses an aggregated central MPC to control different
houses. It is impossible to implement this control
solely in Modelica without interacting with optimiza-
tion capable software such as Python. The operation
of this optimal control algorithm is described below.

Market-based multi-agent system
In a market-based MAS every application is repre-
sented by a device agent. This device agent is respon-
sible for (i) creating a bidding curve of a distributed
energy resource (DER), (ii) sending it to a central con-
trol, called the business agent, who finds a market op-
timum using an optimal control algorithm, (iii) evalu-
ating the bidding curve when the market optimum is
found and (iv) controlling the DER accordingly. An
important advantage of the market-based MAS con-
trol scheme is the use of a bidding curve instead of a
single bid. A curve is able to send all of the negoti-
ation information in one communication step making
the control lightweight.

Figure 2: Five step process of the multi-agent market-
based system

The DHW storage tanks present in the neighborhood
are the applications used for DSM. The device agents
create the bidding curve of the DHW storage tanks by
using a step curve with a breakpoint at the state tem-
perature relative to the comfort boundaries as a func-

tion of a priority p. This priority can be understood
as ”the willingness” of a tank to consume power from
the device agent’s point of view and varies from 0 to
100. A priority of zero means the tank is unable to
consume power whereas a priority of 100 represents a
state where the device is obliged to consume power. In
both cases the tank shows no flexibility: a tank with a
state out of the comfort boundaries cannot be used for
DSM. The step curve results from the assumption that
a HP is either on or off and consumes Pnom when the
HP is on.
Let TM be the maximum comfort temperature, Tm
the minimum comfort temperature and Ts a measured
temperature which represents the state temperature at
the top of the water tank. Note that we use a single
sensor value and not the real state temperature that is a
primitive approximation of the state of the water tank
which consists of different layers at different temper-
atures. Vanthournout et al. (2012) present a more rig-
orous manner to find the state of a DHW storage tank
and the power consumption which can be used in fur-
ther research. The resulting bidding curve P (y) with
P the power of the HP for the next simulation step and
y the priority from 0 to 100 is:

P (y) =


Pnom : y < 100 Ts−Tm

TM−Tm

0 : y > 100 Ts−Tm

TM−Tm

(1)

The parameters used in equation 1 are summarized in
table 2. The fixed nominal power is an approximation
of the real power which depends on additional exter-
nal factors such as the efficiency of the HP, the current
state of the thermal storage tank and more.

Variable Unit Value

TM [K] 333
Tm [K] 325
Ts [K] Tank top temperature
Pnom [W] 1200

Table 2: Bidding curve algorithm parameters

The business agent is the top level agent to which all
device agents are connected and is responsible for de-
termining and communicating the market equilibrium.
Each device agent sends his bidding curve to the busi-
ness agent who accumulates the curves and solves an
optimization problem to find the market equilibrium.
The control is implemented in a total of five steps
which are shown in figure 2. The five steps are:

1. Every device agent creates his bidding curve and
sends it to the business agent (blue arrows).

2. The business agent aggregates the bidding curve
and finds the optimal priority by solving an opti-
mization problem (green dot).

3. The optimal priority is broadcasted to all device
agents (orange arrows).
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4. Every device agent evaluates his bidding curve us-
ing the optimal priority to obtain the power set
point for the next control step.

5. Every device agent consumes or produces his
power set point for a time period.

Central MPC of the neighborhood
As stated before, to control the neighborhood a central
MPC is used. Within this MPC we use a simple linear
aggregated model, derived from the thermodynamic
equation for sensible heat, for the state estimation of
the DHW storage tanks in each discrete time step i.
The model uses a single state aggregated state of all
water tanks θi and takes one disturbance into account:
the outside temperature θout. Parameter identification
of the model is done using least square error mini-
mization (LSQE) through the Levenberg-Marquardt-
Fletcher algorithm (Wang et al. 2013). Every time step
has a duration of 15 minutes and the number of time
steps in the horizon of the MPC is called N .

θi+1 = θi + a(θi − θout,i) + cui (2)

The controllable input of the MPC is the total power
consumption of all DHW storage tanks ui for every
control time step i and is the focus of the optimization.
Information available to the MPC optimizer in addi-
tion to the aggregated model are (i) temperature mea-
surements of the tanks, (ii) perfect predictions of the
disturbances, (iii) the bidding curves of the device
agents, and (iv) the thermal comfort boundaries. These
four bits of information result in the boundary condi-
tions of the optimization problem. The average of the
tank temperature measurements for each dwelling k
and a total amount of dwellings equal to 33 is used as
the initial state temperature for the aggregated model .

θ0 =

∑33
k=1 θk,tank

33
(3)

The perfect predictions of the disturbance give exact
values for every discrete time step of the MPC future
horizon.

∀i ∈ [0, N − 1] : θout,i = θout,i, predicted (4)

The accumulated bidding curve of the device agents
defines a minimum and a maximum power consump-
tion for the first control time step (figure 2). Let Pa(p)
be the sum of all bidding curves:

Pa(p) =

33∑
k=1

Pk(p) (5)

DHW storage tanks with a temperature below the com-
fort zone impose a minimum power consumption and
DHW storage tanks with a temperature above the com-
fort zone cannot consume power at all. The maximum
power consumption, PM , and minimum power con-
sumption, Pm of the aggregated model are then given
by:

u0 ≤ PM = Pa(0)

u0 ≥ Pm = Pa(100)
(6)

Bidding curves are only made for the first time step
(i = 0) because this is the only state known by the de-
vice agents. The aggregated model does not provide
a state prediction for each device individually which
makes these boundary conditions only valid for the
first time step. Boundary conditions for the subse-
quent time steps are set by a maximum power equal
to the maximum power consumption of all HPs and a
minimum of zero, assuming all tanks are flexible.

∀i ∈ [1, N − 1] : ui ≤ 33 · Pnom = 39600 W
∀i ∈ [1, N − 1] : ui ≥ 0

(7)

Finally, every state temperature except the first one is
limited by the comfort boundaries. No boundary con-
ditions are set on θ0 because the MPC is unable to con-
trol this temperature and the problem would be imme-
diately infeasible if θ0 falls out of the comfort zone.
The boundary conditions for the other state tempera-
tures are:

∀i ∈ [1, N ] : TM ≥ θi ≥ Tm (8)

Given the above statements, the total MPC optimiza-
tion problem can be formulated with a quadratic ob-
jective:

min J =
N−1∑
i=0

(ui + Pocc,i − PPV,i)
2 +W · ui

s.t. equations [2-8]
(9)

In which Pocc,i is the total predicted electric power
consumption in time step i for the occupants of all
dwellings k, PPV,i the total predicted solar panel elec-
tricity production in time step i of all dwellings k and
W a weighting factor. The objective tries to maxi-
mize the electric power consumption during periods
of high PV production while the weighting factor W
ensures no useless power is consumed during periods
of high PV production and a high state temperature of
the aggregated model. Thanks to the predictions, the
MPC can shift the neighborhood’s power consumption
to minimize the objective function by controlling the
consumption of the HPs.
Simulations are done for two periods of three days: a
winter period from 2011-03-18 until 2011-03-21 and
a summer period from 2011-07-22 until 2011-07-25.
Both periods experience curtailing problems due to
high solar radiation leading to high power produc-
tion of the PV systems. The dymosim co-simulation
method was the only method robust enough to simu-
late the complex model but slowed down the simula-
tion speed significantly. Although the simulation pe-
riods are limited, the periods are chosen to show high
overproduction of electricity and are sufficient for the
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Name Trigger Rules

ClockDHW Clock Between 12h00 and 16h00 the set temperature of the DHW storage tank
is increased.

VGridvar Voltage at dwelling’s
grid connection

When the voltage surpasses Vlim, the set temperature of the DHW stor-
age tank is increased. The voltage limit depends on the position of the
dwelling in the grid.

Vlim was set to 251 V, 2 V lower than the shutdown limit to create a safety margin.

Table 3: Overview of the RBC strategies used in the comparison (De Coninck et al. 2014).

comparison of the different control strategies in this
proof of concept.

RESULTS AND DISCUSSION
Simulation speed comparison
Figure 3 shows the simulation speed as a function
of the communication step size of the hysteresis con-
trol input for the different co-simulation methods com-
pared with a discrete hysteresis implemented solely in
Modelica (blue line Dymola) for the detailed building
and figure 4 does this for the detailed building with
the heating system. Note that the simulation time of
the dymosim co-simulation method is not included in
these figures due to a very high simulation time of over
300s, even for a hysteresis time step of 3600s due to
the severe overhead in persisting the Modelica state
with text files.

Figure 3: Simulation speed for the different cosimula-
tion methods for the detailed building.

The simulation time in these models is largely depen-
dent on two main factors: (i) The hysteresis step size
and (ii) the overhead when communicating between
the two software environments. First, a larger hystere-
sis step size implies less calculations of the hystere-
sis control equations and less communication steps be-
tween the two environments. For very small time steps
(about 60s) this can have an effect even on the Mod-
elica simulation without communication with Python.
Second, the communication overhead slows down the
simulation every time Python has to communicate with
Modelica or vice-versa and leads to a fixed time in-
crease every communication step. This effect kills the
performance of the dymosim and (to a lesser degree)
C-function method for small step sizes due to a high
overhead every time step but deteriorates with an in-

crease in step size.

Figure 4: Simulation speed for the different co-
simulation methods for the detailed building model
with heating system.

All simulations show a decrease in simulation time
with an increase in hysteresis step size with a limited
effect for the Dymola simulation where only the hys-
teresis step size plays an important role and the com-
munication overhead is non existing leading to a con-
stant simulation time for step sizes above 900 s. For all
co-simulation methods, increasing the hysteresis step
size has a large effect on the simulation time due to the
decrease in communication overhead.
The FMU method shows the lowest communication
overhead of all co-simulation methods and simulates
even faster with a hysteresis control implemented in
Python than the pure Modelica simulation, implying
that there is no slowing-down effect when doing co-
simulation with an FMU. This can be contributed due
to the fact that the state of both Modelica and Python
is constantly persisted in separate processes. The C-
function method comes close to the Dymola simula-
tion for larger hysteresis time steps indicating a rea-
sonable effect of overhead for a communication cycle
due to the reading and writing of the Python state.
Of course these results heavily depend among others
on the integrator choice, model structure but still give
a good indication of the overhead for the different co-
simulation methods and are able to capture the general
tendencies.

DSM with a central MPC
Figure 5 shows the loss-benefit space, presented by
De Coninck et al. 2014 for rule based control (RBC)
strategies, and here extended to MPC strategies,,
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which is our base for the comparison of DSM control
strategies and characterized by two components. The
first component lies on the horizontal axis and repre-
sents the relative increase in electricity demand com-
pared to a reference case which lies on the origin. The
second component is the relative reduction in curtail-
ing and ohmic losses which lies on the vertical axis
and represents the gain in electricity production due
to prevention of curtailing losses. Both components
are equally important for the evaluation of a control
strategy. The resulting net electricity saving compared
to a reference case ∆ENBH is the difference between
the relative increase in electricity production and con-
sumption. A control strategy for which the relative
consumption equals the relative extra PV production
lies on the status-quo line and is not better compared
to the reference case which lies in the origin. The ref-
erence case applies a simple hysteresis control to the
temperature of the DHW storage tank to ensure the
tank stays between 53◦C and 55 ◦C, as is a common
implementation in current households.
The RBC strategies that are used in the comparison are
listed in table 3 (De Coninck et al. 2014). All control
strategies are represented by a colored dot correspond-
ing to the strategy and a number in the dot. For RBC
strategies, this number gives the increase in set temper-
ature when the control is active relative to 55◦C. Dots
that correlate to an MPC strategy have a number which
represents the upper thermal comfort boundary rela-
tive to 60◦C. For example, a dot that has zero inside
corresponds to a control with 52◦C and 60◦C as com-
fort boundaries whereas a dot with an 8 inside means
the thermal comfort boundaries of the DHW storage
tank are 52◦C and 68◦C. We tested two different hori-
zons for the MPC: MPC12 has a prediction horizon of
12 hours and MPC24 has a prediction horizon of 24
hours, corresponding to N = 48 and N = 96 respec-
tively.
Figure 5 shows that the MPC24 control outperforms all
RBC strategies in both periods, although this is less the
case for the summer period where only MPC24,8 out-
performs the RBC strategies. The MPC experiences
almost no increase in power consumption while de-
creasing the PV curtailing losses with more than 7%
during the winter period and almost 10% during the
summer period. The predictive nature of the MCP
control uses the thermal flexibility of the DHW stor-
age tanks at ideal times to reduce curtailing as much
as possible.

CONCLUSION
This paper describes three methods that can be used
for the co-simulation of Modelica and Python. The
FMU method has shown to be the fastest method in
terms of simulation speed but can fail during the cre-
ation of the FMU or due to solver issues. The C-
function and especially the dymosim method show
a large overhead every communication cycle but are

able to use the Modelica simulation program solvers
and are thus more robust than the FMU method. In
general, when performing a co-simulation between
Python and Modelica, we advice to try the different
methods in the following order of decreasing simu-
lation speed and increasing robustness: (i) FMU, (ii)
C-function and (iii) the dymosim method. Finally,
the Modelica language standardizes a so-called ”Ex-
ternalObject” through which a pointer to memory can
be passed from one function call to another. Hence, by
optimizing the implementation of the C-function in the
buildings library, this could probably be used to avoid
preserving the state in a file and prevent the method
from starting a python interpreter each step.
Due to the complexity of the neighborhood model used
in the proof of concept, the dymosim method was used
as the co-simulation technique to implement a cen-
tral MPC in a market-based MAS setting. The central
MPC control of the neighborhood clearly outperforms
the other RBC strategies using a simple aggregated
model and optimization objective to reduce the cur-
tailing losses. This is especially the case when there
were unexpected times of PV production or when the
flexibility of the tanks was limited. When this hap-
pens, the MPC is able to choose the ideal moment of
power consumption, optimizing the use of the limited
flexibility.
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