
A FLEXIBLE MODEL TRANSFORMATION TO LINK BIM WITH DIFFERENT

MODELICA LIBRARIES FOR BUILDING ENERGY PERFORMANCE

SIMULATION

Jun Cao1, Reinhard Wimmer1, Matthis Thorade2, Tobias Maile1, James O'Donnell3, Jörg

Rädler2, Jérôme Frisch1 and Christoph van Treeck1
1Institute of Energy Efficient Building E3D, RWTH Aachen, Germany

2Berlin University of the Arts, Institute for Architecture and Urban Planning, Germany
3School of Mechanical and Materials Engineering and Electricity Research Centre, University

College Dublin, Ireland

ABSTRACT

Today, developing models for Building Energy

Performance Simulation (BEPS) is a time consuming

and costly process. Automated reuse of data from

Building Information Models (BIMs) for BEPS model

development is a promising approach to improve the

process by avoiding manual data input. Recent work

focuses on linking BIM to Modelica, a modelling

language that is becoming increasingly important in

the BEPS community.

This paper presents our technical development of a

flexible model transformation system to link BIM with

different Modelica libraries to support BEPS. We

describe all technical aspects relevant to this model-

to-model transformation system: model hierarchy

parsing, meta-model creation, model transformation

by mapping rules and rule filtering techniques.

INTRODUCTION

Traditional BEPS model development is a mostly

manual and, thus, time consuming and costly process.

In addition, this manual model creation process can

lead to numerous errors and omissions, and inevitably

adds dramatically to the cost of the project (Bazjanac

et al., 2011; Bazjanac, 2009, 2008). Automated reuse

of data from BIM for BEPS model development is a

promising concept to address the problem (Yan et al.,

2013; Jeong et al., 2014; Cao et al., 2014; Wimmer et

al., 2014; Basarkar et al., 2012; Aksamija, 2012).

These data exchange techniques between BIM and

BEPS improve the model developing process by

avoiding large manual data input.

Recent work focuses on linking BIM to Modelica, a

modelling language becoming more important in the

BEPS community. For example, the methodologies of

Yan et al. (2013) and Jeong et al. (2014) use the

Application Programming Interface (API) of a

proprietary CAD tool to convert a BIM to a specific

Modelica library. Their code generation focuses only

on geometry conversion for one Modelica library. Cao

et al. (2014) and Wimmer et al. (2014) developed a set

of data mapping rules from an open BIM to a specific

Modelica library. These mapping rules also focus on

converting BIM data into one target Modelica library.

Both previously identified shortcomings, namely the

existing support for just one library, and the focus on

geometry will be addressed in this paper. Hence, this

work concentrates on converting Heating, Ventilating

and Air Conditioning (HVAC) systems from Industry

Foundation Classes (IFC) based BIMs into different

Modelica libraries. We use SimModel (O’Donnell et

al., 2011) as a placeholder for IFC in our development

for distinct reasons explained by Cao et al. (2014) and

Wimmer et al. (2014): 1) IFC is the open standard for

BIM but does not contain adequate HVAC data

definitions for BEPS. SimModel is a BIM format that

contains the necessary data for BEPS and the structure

of this data model aligns with the structure of IFC; 2)

SimModel supports data translations from Input Data

Dictionary (IDD), Open Studio IDD, gbXML and

IFC; 3) SimModel will form the basis for a new IFC

Model View Definition (MVD) that will enable data

exchange from HVAC design applications to energy

analysis applications; 4) extensions to SimModel

could easily support other data formats and

simulations. In addition, geometry definitions

contained in IFC can be imported into SimModel and

HVAC definitions can be added. This acts as starting

point for our work. The outcome is a prototype that

transforms SimModel into Modelica data based on

different Modelica libraries.

SimModel is a data model based on an XML Schema

Definition (XSD), using an XML document to save

and exchange model data with the other simulation

tools. An important work from Reisenbichler et al.

(2006) illustrates the possibility to exchange model

data between the Modelica simulation platform

Dymola and another engineering environment via an

XML document. However, they focus on storing the

Modelica model in a tree-structured XML document,

after loading the XML data to generate the

corresponding model for Dymola via an XML file

parser. We focus on resolving the model-to-model

transformation when the source data model, i.e., the

SimModel, is different to the target data model

developed in Modelica language and our work uses an

XML document as a data container to support the data

exchange and conversion between them.

The model transformation from SimModel to

Modelica presents a unique challenge that must

account for significant differences in their respective

model structures. For example, the model component

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 434 -

and parameter definitions, the modeling hierarchy,

and level of detail (LOD) of SimModel and Modelica

differ substantially.

This paper focuses on detailed technical development

of the model transformation system. A system level

perspective for the overall conversion process which

includes Modelica and use case examples is described

in Remmen et al. (2015). The following sections

present details of the research methods, system

implementation and limitations discussion. The paper

concludes with the current progress and future

developments.

METHODOLOGY

This section describes the transformation system

developed for linking BIM with different Modelica

libraries. Figure 1 illustrates the overall system where

SimModel acts as the BIM container to save BIM data,

for example, HVAC, geometry, property data of

HVAC systems and equipment, simulation

configurations, etc. The SimModel schema is the XSD

of the SimModel data model, defining five different

sub-schema namespaces saving and organizing model

data and their relationships, such as the building

topology. Based on the original work of O’Donnell et

al. (2011), we extend the SimModel schema structure

for saving additional simulation data required by

different Modelica libraries. While SimModel only

entails the predefined LOD originating from

EnergyPlus, Modelica allows the definition of deeper

LODs. The increased LOD of Modelica requires the

ability for the user to add additional data to SimModel,

and the new, extended SimModel data model is named

SimModel+. All the SimModel data are finally saved

in an XML-based format file named SimXML.

After saving BIM data into SimXML, the resulting file

is then loaded into system memory and parsed by our

transformation system based on an API generated by

a technique named XML data binding. During the

SimXML file parsing, the transformation system

builds a dynamic hierarchy structure representing the

different data objects of SimModel, for example,

different building elements, HVAC systems and their

distribution inside the building envelope.

As the SimModel structure is different to commonly

used Modelica libraries developed for BEPS (Cao et

al., 2014 and Wimmer et al., 2014), we develop a

mapping rule schema to represent the data model of

mapping rules between SimModel and different

Modelica libraries. Simulation engineers can

efficiently re-use this mapping rule schema to define

different sets of mapping rule instances for different

target Modelica libraries. The system loads a set of

user-defined mapping rules handling the data

transformation from SimModel into a specific

Modelica library.

All corresponding parts of our transformation system

are implemented in the C++ programming language,

in order to satisfy the requirements of model

transformation speed and the access to low-level

system features, such as virtual memory allocation.

C++ offers advanced programming features, e.g.,

objects, inheritance, and polymorphism, while also

providing the facilities for low-level memory

manipulation. Thus, C++ is immensely popular,

particularly for applications that require speed and/or

access to some low-level system features.

Afterwards, the mapped or translated objects and

properties for Modelica code generation can be

retrieved and controlled by other script-based

languages, like Python, via a generic API developed

in our transformation system. Script programming

languages, like Python, are heavily used for pre- and

post-processing of Modelica. They are more flexible

and easier to use for controlling the procedure of

Modelica code generation based on techniques like

pre-defined code templates and interpretation engines.

This generic API, interfacing C++ and Python,

separates the translation logic from code generation.

The Python-based code generator then performs the

last set of data manipulations resulting in a Modelica

file that references only one specific Modelica library

and is ready for a subsequent simulation.

SimXML Data Binding and Syntax Validation

As described in the former sub-section, the data file of

SimModel is an XML-based file named SimXML. It

saves all the SimModel data as a structured XML

document that is in accordance with the syntax defined

Figure 1 Transformation overview

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 435 -

by the SimModel schema. Thus, this sub-section

introduces the XML data binding technique for

accessing SimXML and validating its syntax.

XML data binding is the process of extracting data

from a structure representation of XML documents

and presenting it as a hierarchy of objects that

correspond to a document vocabulary. This allows us

to manipulate SimXML data in a more natural and

efficient way. We selected the open source, cross-

platform CodeSythesis XSD (CodeSynthesis, 2014) as

our system XML binding parser. It is an efficient

framework whose parser can be customized for our

own applications. The automated XML data binding

of CodeSythesis XSD will generate a C++ API for

accessing the data stored in SimXML after parsing the

SimModel schema. For the SimModel schema, 2611

C++ classes representing different SimModel objects

are generated for the data manipulation in a given

SimXML file.

The XML syntax validation performs a number of

checks on the XML document to prevent the

construction of an inconsistent object model, such as

an object model with missing required attributes or

elements. Our SimXML validation relies on the

underlying Xerces-C++ XML parser embed in

CodeSythesis XSD. It checks the SimXML data

against the given SimModel schema, and outputs the

errors found into a log file. The syntax validation is

enabled by default and is very useful during the

development stage to detect problems with the data

model at an early stage. For a user of the framework,

however, this validation should not play a significant

role anymore.

More detailed explanations of SimModel schema and

the XML binding technique can be found in the work

of Cao et al. (2014) and O’Donnell et al. (2011).

SimModel Hierarchy Parsing and Visualization

A model hierarchy is an arrangement of the model

elements, e.g., objects, names, values, categories, etc.,

in which the elements are represented as being

"above," "below," or "at the same level as" one

another. Consequently, the SimModel consists of a

hierarchical tree structure saving such relationships

between different SimModel data elements. For

example, a SimProject class object is normally the root

node of this hierarchy tree representing a unique

simulation project. This root node can store multiple

links that refer to different building design

alternatives. Each design alternative also refers to a set

of building elements, zones, HVAC systems

distributed inside the building, etc. Therefore, the

SimModel hierarchy saves a set of different SimModel

elements as well as the links between them in a tree-

based structure.

In SimXML, each model element is given a unique

long type id that distinguishes it from all other

elements. Each parent element of the SimModel

hierarchy links to a child element by saving its id. As

a result, “parse SimModel hierarchy” is a recursive

algorithm that detects each SimModel element, locates

its position in the hierarchical tree and creates a tree

node with a link to its data.

After that, we can also recursively iterate each node of

this hierarchy, retrieve the link to the SimXML data

element and print out the element data for visualizing

the created hierarchy.

SimModel to Modelica Mapping Rule Schema

The mapping rule concept was first introduced in

mathematics, representing a particular transformation.

This transformation describes the conversion of a

source model data into a target model data under the

constraints specified by a given equation system. As

SimModel is significantly different from the data

model of a specific Modelica library (Cao et al., 2014),

e.g., AixLib or BuildingSystems, we also need to

define a set of mapping rules that can handle the

difference between these two different data models.

Wimmer et al. (2015, 2014) proposed a set of different

mapping rules that can convert the SimModel data into

the Modelica model data defined by a specific BEPS

library AixLib (EBC, 2014). Based on this work, we

developed a mapping rule schema in XSD, containing

the data model of the mapping rules between

SimModel and different Modelica libraries. We can

thus efficiently re-use this mapping rule schema,

originally developed for our transformation system, to

define different sets of mapping rule instances for

different target Modelica libraries.

Figure 2 illustrates the main structure of the mapping

rule schema. Mapping rules are classified according to

three different levels in the schema:

1. The first level is library mapping, which is

designed to link different mapping rule instances

for different Modelica libraries.

2. The second level is component mapping, which

is responsible for mapping SimModel

components, e.g., a boiler of the HVAC system,

into the corresponding component of the

Modelica library specified by the first level

mapping. At this level, we developed four

different mapping rule schemas, i.e., One2One

(one component in SimModel maps to another

one in Modelica), One2Many, Many2One, and

Gap (a component required by Modelica is

missing from SimModel, i.e., does not exist yet

in SimModel schema. If possible it will be added

to SimModel by this rule).

3. The third level deals with the internal properties

mapping of the components defined by the

upper-level mapping rules. Here we implement

the schema for five different property mapping

rules: One2One (an One2Many property

mapping is just a set of One2One property

mappings), Many2One, Gap, Conversion (the

property of a SimModel component needs to be

converted into another data representation type

or result of Modelica by a user-defined equation

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 436 -

system or function, e.g.; the energy efficiency

curve from a continuous profile function into a

matrix containing discrete signal values) and

Combination (a property transformation

combing multiple former property mapping rules

defined in this level).

For more detailed explanations and examples of

different SimModel mapping rules, please refer to the

work of Wimmer et al. (2015, 2014).

Figure 2 Mapping rule schema. We define different levels of mapping rule for different SimModel elements.

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 437 -

SimModel to Modelica Mapping Rule Filtering

Czarnecki and Helsen (2006, 2003) discussed

fundamental work on data model transformation. In

context of their work we can view transforming

SimModel data model to Modelica code as a special

case of model-to-model transformations. We only

need to provide the meta-models for the source model

and the target programming language as well as the

transformation defined with respect to the meta-

models. A transformation engine transfers the source

model data into the target programming language

model (see Figure 3).

In our case, the source model is SimModel and the

target language is Modelica. The transformation is an

instance of the mapping rule schema and the

transformation engine contains a set of filters

translating the model data by filtering the mapping

rule instance. The source model data is stored in

SimXML file and the target programming language

model is the Modelica code, based on a specific BEPS

library.

A meta-model describes the type of model and

typically defines the abstract syntax of a modelling

notation (semantics information of the data model,

such as the name list of SimModel APIs and the

instance creator for each API at runtime of our

system). In addition to this theory, Modelica is a

generic programming language designed for different

kinds of simulation tasks in engineering. The data

models of different Modelica BEPS libraries differ

from each other. Therefore, it is not feasible to create

the meta-model for each different Modelica library.

On the contrary, we analyze differences between their

data models and SimModel by defining and

implementing the same use cases, both in SimModel

and each sub-library developed within the Annex 60

base library (Remmen et al., 2015). Afterwards, we

study possible data mapping rules between SimModel

and these BEPS libraries by analyzing the use case we

implement on both sides. The output of this study

describes the mapping rule schema we developed in

the former sub-section.

For creating the meta-model of SimModel, we use a

technique named reflection or self-reflection. In

computer science, reflection is the ability of a

computer program to examine and modify the

structure and behavior (specifically the values, meta-

data, properties and functions) of the program at

runtime (Malenfant et al., 1996). This technique

allows the handling of a SimModel object indirectly

via a SimModel meta-object and represents a

particular kind of meta-programming. This program

concept was born from object-oriented programing

(OOP), e.g., C++ programing. Therefore, as

everything in OOP is an object, a SimModel data class

can also be treated as an object. With this so-called

meta-object, we can manipulate every feature related

to that class, like its constructor, methods, attributes,

and so on. In our system development, we implement

our SimModel meta-model based on the API provided

by the QMetaObject class of the Qt library. The Qt

Meta-Object System is responsible for maintaining the

runtime type information of different SimModel

objects, such as HVAC components and properties. A

single QMetaObject instance is created for each

SimModel data class that is used in our application,

which stores all the meta-information for the

SimModel data class. The API of a QMetaObject is a

very flexible solution for handling large third party

libraries, like the SimModel schema.

Based on the transformation theory we introduced in

the beginning of this sub-section, the next step consists

of calling a transformation engine to transfer the

source data model SimModel in SimXML into the

target Modelica code. The transformation engine

contains a set of different mapping rule filters that

correspond to the different mapping rules developed

in the mapping rule schema. The corresponding rule

filter processes each mapping rule in three stages: 1)

The first stage is concerned with parsing the mapping

rule content from its XML-based rule data file via the

API generated from mapping rule schema based on

XML data binding. 2) The rule filter needs to create or

call a SimModel meta-object instance to retrieve the

SimXML data specified by the mapping rule. 3) The

rule filter will execute the data operation, e.g.,

equations and functions defined by the mapping rule

to generate the Modelica data converted from

SimModel. The overall filtering process determines

Figure 3 Basic concepts of model transformation

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 438 -

the model transformation strategy. Users are only

concerned with providing the mapping rules.

Generic API for Modelica Code Generation

This sub-section introduces a generic API developed

for interfacing C++ and the script programming

language Python, in order to better control the

Modelica code generation.

We developed our first prototype for this generic API

based on a technique named language binding. In

computer science, a binding from a programming

language to a library is an API providing glue code to

use that library in a particular programming language

(Binding, 2012). In the context of our generic API,

bindings are wrapper libraries that bridge the C++ and

Python programming languages in order to re-use the

SimModel API generated for C++ in Python.

We use ctypes (ctypes, 2014) as one of the binding

libraries to wrap the SimModel API for data access out

of Python. ctypes provides C compatible data types,

and allows calling functions in DLLs or shared

libraries from Python. The other binding libraries, like

Cython, are also currently under testing in the project

development.

In the current prototype development, we exposed the

mapped or translated SimModel components and their

internal properties into a Python-based Modelica code

generator via the ctypes wrapper. In order to provide

Python with full controls on SimModel internal data,

we also exposed more data objects from the SimModel

hierarchy into Python via the generic API.

Figure 4 illustrates our current hierarchy of objects

contained in SimModel. As illustrated in the parsed

hierarchical structure, SimProject is the root element

of the SimModel data model, which represents a BIM-

based simulation project. SimProject in turn refers to

multiple different child elements including SimSite,

which defines a simulation site containing one or more

building models, i.e. SimBuilding. A SimBuilding

element then refers to the geometry data of the

building envelop, such as the space boundary

SimSpaceBoundary via the thermal zone element

SimZone assigned. The parent HVAC system element

is SimSystem, which in turn refers to different HVAC

sub-systems.

For example, the experimental use case given by

Remmen et al. (2015) defined a hot water loop system

as: 1) a water supply side sub-system; 2) a water

demand side sub-system and 3) a controls sub-system.

These sub-systems contain sets of individual HVAC

components such as fans, pumps, heating coils and

cooling coils.

LIMITATIONS

The proposed transformation framework is an

enhancement of former works, e.g., Yan et al. (2013),

Jeong et al. (2014), Cao et al. (2014) and Wimmer et

al. (2014). As previous work focused on linking one

specific Modelica library to the BIM side, naming

Figure 4 Generic API for Python. We show the hierarchy of SimModel objects exposed via the API in the

development.

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 439 -

conventions and data representations differ and are not

suitable for linking different libraries.

Yan et al. (2013) and Jeong et al. (2014) use

proprietary APIs of Auto Revit to convert only the

geometry data of the BIM model into a specific

Modelica library. The solution results in a non-open-

standard and is non-generic for converting different

BIM data formats, e.g., IFC and SimModel. The

conversion of the internal HVAC systems from BIM

has not yet been resolved by their approaches.

Cao et al. (2014) and Wimmer et al. (2014) developed

a set of mapping rules from open BIM to a specific

library. Their works do not provide a generic

translation framework to reuse the data translation

logic (the rule schema) of these rules for different

libraries. Thus, they might need a considerable effort

to define new mapping rules for different libraries.

Both of these shortcomings were addressed in this

work. The authors are aware that the presented

framework also has some limitations. The conversion

from BIM to a Modelica model is not fully automatic

yet, e.g., if a component required by the Modelica side

is missing in SimModel, i.e., it does not exist in

SimModel schema yet, it has to be added into

SimModel manually by a user-defined mapping rule.

The mapping rules are an example of adaptable

components. To adjust this part, the user needs deep

knowledge of both the information model structure

and the Modelica model.

As a short summary, this work makes the BIM

transformation system able to handle different

Modelica libraries developed for different simulation

requirements.

CONCLUSIONS AND FUTURE WORK

This paper presents the technical development of a

flexible model transformation system to link BIM with

different Modelica libraries for supporting integrated

architectural design and BEPS. We focus on the

schema definition and interpretation of mapping rules

within the transformation system:

1) We developed a fundamental data representation

schema in XSD to define possible data mapping

relationships between BIM and Modelica. This

representation schema stores generic mapping rules

for translating different levels of BIMs data to

Modelica models, such as the library level, HVAC

components level, and the internal property level of

HVAC components.

2) Based on the representation schema developed in

1), simulation experts can easily define a specific data

transformation process between BIMs and different

Modelica libraries by using the mapping rules.

3) The third step consisted of interpreting the XML-

based mapping rules defined in 1) and 2). This

interpretation step converts actual HVAC component

1 IEA EBC Annex 60, http://www.iea-annex60.org

instances and their properties from the BIM world into

the Modelica world. The result of this process is then

used to generate Modelica models within the

subsequent steps in the framework.

4) The generic API prototype, interfacing C++ with

Python, is developed for the Modelica code

generation. This API satisfies low-level application

requirements like speed, while also providing the

facilities for high-level control of Modelica code

generation via script-based language. It separates

translation logic from code presentation.

The proposed flexible model transformation is an

enhancement to current work by demonstrating the

potential to develop a generic solution for linking BIM

with different Modelica libraries in order to accelerate

the BEPS development in Modelica. While the

building simulation domain has its specific challenges,

it should be possible to adapt most of the developed

concepts and tools to other simulation domains. In

particular, the separation of generic code and specific

data transformation rules make this process adaptable.

Our future work will concentrate on the following sub-

tasks: 1) Enrich the SimModel data exposed by the

generic API for the new application requriements. 2)

Implement the baseline use cases in the other

Modelica libraries we are using, like BuildingSystems

(Nytsch-Geusen et al., 2013) and Buildings (Wetter et

al., 2014). 3) Further develop more complicated use

cases on different Modelica libraries. 4) Test the

transformation system comprehensively by a set of use

cases developed on different Modelica libraries.

ACKNOWLEDGEMENT

This work emerged from the Annex 601 project, an

international project conducted under the umbrella of

the International Energy Agency (IEA) within the

Energy in Buildings and Communities (EBC)

Programme. Annex 60 will develop and demonstrate

new generation computational tools for building and

community energy systems based on Modelica,

Functional Mockup Interface and BIM standards.

The work is also conducted within the German

research project EnEff-BIM, Energy Efficient

Modeling and Simulation Based on Building

Information Modeling, was funded by the BMWi 2

under Contract No. 03ET1177A.

Other parts (no duplications) of the preliminary

research work in Ireland were supported by a Marie

Curie FP7 Integration Grant within the 7th European

Union Framework Programme.

REFERENCES

Aksamija, A. (2012). BIM-Based building

performance analysis: evaluation and simulation

of design decisions. In Fueling Our Future with

Efficiency. Presented at the 2012 ACEEE

2 The German Federal Ministry for Economic Affairs

and Energy, http://www.bmwi.de

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 440 -

Summer Study on Energy Efficiency in

Buildings, Pacific Grove, California.

Basarkar, M., O’Donnell, J., Maile T., Settlemyre K.,

Haves P., 2012. Mapping HVAC systems for

simulation in EnergyPlus, in IBPSA Building

Simulation - 2012. USA.

Bazjanac, V., Maile, T., Rose, C., et al., “An

assessment of the use of building energy

performance simulation in early design,” in

Proceedings of the Building Simulation, Sydney,

Australia, 2011.

Bazjanac, V., “Implementation of semi-automated

energy performance simulation: building

geometry,” in Proceedings of the 26th

International Conference on Managing IT in

Construction (CIB W), vol. 78, pp. 595–602,

2009.

Bazjanac, V., IFC BIM-Based Methodology for Semi-

Automated Building Energy Performance

Simulation, Lawrence Berkeley National

Laboratory, Berkeley, Calif, USA, 2008.

Binding (2012). Language binding. Retrieved from

http://en.wikipedia.org/wiki/Language_binding#

cite_note-1

Cao, J., Maile, T., O'Donnell, J., Wimmer, R., and van

Treeck, C., 2014. Model transformation from

SimModel to Modelica for building energy

performance simulation. In BauSIM 2014

Conference, Aachen, Germany.

CodeSynthesis, 2014. XSD: XML data binding for

C++. Retrieved from http://www.codesynthes-

is.com/products/xsd/

ctypes, 2014. ctypes — A foreign function library for

Python. Retrieved from https://docs.python.org/-

2/library/ctypes.html

Czarnecki, K., & Helsen, S. (2006). Feature-based

survey of model transformation approach-

es. IBM Systems Journal, 45(3), 621-645.

Czarnecki, K., & Helsen, S. (2003, October).

Classification of model transformation

approaches. In Proceedings of the 2nd OOPSLA

Workshop on Generative Techniques in the

Context of the Model Driven Architecture (Vol.

45, No. 3, pp. 1-17).

EBC (Institute for Energy Efficient Buildings and

Indoor Climate, Energy Research Center E.ON,

RWTH Aachen University), AixLib (2014).

[Modelica-based BEPS Library]. Retrieved from

https://github.com/RWTH-EBC/AixLib/

Jeong, W., Kim, J., Clayton, M. J., Haberl, J. S., Yan,

W. (2014), A Framework to Integrate Object-

Oriented Physical Modelling with Building

Information Modelling for Building Thermal

Simulation, Journal of Building Performance

Simulation.

Malenfant, J., Jacques, M., & Demers, F. N. (1996,

April). A tutorial on behavioral reflection and its

implementation. In Proceedings of the Reflection

(Vol. 96, pp. 1-20).

Nytsch-Geusen, C.; Huber, J.; Ljubijankic, M. &

Rädler, J. (2013), 'Modelica BuildingSystems −

eine Modellbibliothek zur Simulation komplexer

energietechnischer Gebäudesysteme', Bauphysik

35 (1), 21--29 .

O’Donnell, J., See, R., Rose, C., Maile, T., Bazjanac,

V., Haves, P., 2011. SimModel: A domain data

model for whole building energy simulation, in:

IBPSA Building Simulation 2011. Sydney,

Australia.

Remmen, P., Cao, J., Ebertshäuser, S., Frisch, J.,

Lauster, M., Maile, T., O’Donnell, J., Pinheiro,

S., Rädler, J., Thorade, M., Wimmer, R., Müller,

D., Nytsch-Geusen, C., van Treeck, C. (2015). An

Open Framework for Integrated BIM-based

Building Performance Simulation Using

Modelica, in 14th IBPSA Building Simulation,

Hyderabad, India.

Reisenbichler, U., Kapeller, H., Haumer, A., Kral, C.,

Pirker, F., & Pascoli, G. (2006, September). If we

only had used XML. In In 5th Modelica

conference, September.

Wetter, M., Zuo, W., Nouidui, T. S., & Pang, X.

(2014). Modelica buildings library. Journal of

Building Performance Simulation, 7(4), 253-270.

Wimmer, R., Maile, T., O'Donnell, J., Cao, J., van

Treeck, C., 2014. Data-requirements

specification to support BIM-based HVAC-

definitions in Modelica, in BauSIM 2014

Conference, Aachen, Germany.

Wimmer, R., Cao, J., Remmen, P., Maile, T.,

O'Donnell, J., Frisch J., Streblow, R., Müller, D.,

and van Treeck, C. (2015). Implementation of

Advanced BIM-Based Mapping Rules For

Automated Conversions to Modelica, in 14th

IBPSA Building Simulation, Hyderabad, India.

Yan, W., Clayton, M., Haberl, J., Jeong, W., Kim, J.

B., Kota, S., Alcocer, J. L. B., Dixit, M., 2013.

Interfacing BIM with building thermal and

daylighting modeling, in IBPSA Building

Simulation - 2013. France.

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 441 -

