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ABSTRACT 

Today, developing models for Building Energy 

Performance Simulation (BEPS) is a time consuming 

and costly process. Automated reuse of data from 

Building Information Models (BIMs) for BEPS model 

development is a promising approach to improve the 

process by avoiding manual data input. Recent work 

focuses on linking BIM to Modelica, a modelling 

language that is becoming increasingly important in 

the BEPS community.  

This paper presents our technical development of a 

flexible model transformation system to link BIM with 

different Modelica libraries to support BEPS. We 

describe all technical aspects relevant to this model-

to-model transformation system: model hierarchy 

parsing, meta-model creation, model transformation 

by mapping rules and rule filtering techniques. 

INTRODUCTION 

Traditional BEPS model development is a mostly 

manual and, thus, time consuming and costly process. 

In addition, this manual model creation process can 

lead to numerous errors and omissions, and inevitably 

adds dramatically to the cost of the project (Bazjanac 

et al., 2011; Bazjanac, 2009, 2008). Automated reuse 

of data from BIM for BEPS model development is a 

promising concept to address the problem (Yan et al., 

2013; Jeong et al., 2014; Cao et al., 2014; Wimmer et 

al., 2014; Basarkar et al., 2012; Aksamija, 2012). 

These data exchange techniques between BIM and 

BEPS improve the model developing process by 

avoiding large manual data input. 

Recent work focuses on linking BIM to Modelica, a 

modelling language becoming more important in the 

BEPS community. For example, the methodologies of 

Yan et al. (2013) and Jeong et al. (2014) use the 

Application Programming Interface (API) of a 

proprietary CAD tool to convert a BIM to a specific 

Modelica library. Their code generation focuses only 

on geometry conversion for one Modelica library. Cao 

et al. (2014) and Wimmer et al. (2014) developed a set 

of data mapping rules from an open BIM to a specific 

Modelica library. These mapping rules also focus on 

converting BIM data into one target Modelica library. 

Both previously identified shortcomings, namely the 

existing support for just one library, and the focus on 

geometry will be addressed in this paper. Hence, this 

work concentrates on converting Heating, Ventilating 

and Air Conditioning (HVAC) systems from Industry 

Foundation Classes (IFC) based BIMs into different 

Modelica libraries. We use SimModel (O’Donnell et 

al., 2011) as a placeholder for IFC in our development 

for distinct reasons explained by Cao et al. (2014) and 

Wimmer et al. (2014): 1) IFC is the open standard for 

BIM but does not contain adequate HVAC data 

definitions for BEPS. SimModel is a BIM format that 

contains the necessary data for BEPS and the structure 

of this data model aligns with the structure of IFC; 2) 

SimModel supports data translations from Input Data 

Dictionary (IDD), Open Studio IDD, gbXML and 

IFC; 3) SimModel will form the basis for a new IFC 

Model View Definition (MVD) that will enable data 

exchange from HVAC design applications to energy 

analysis applications; 4) extensions to SimModel 

could easily support other data formats and 

simulations. In addition, geometry definitions 

contained in IFC can be imported into SimModel and 

HVAC definitions can be added. This acts as starting 

point for our work. The outcome is a prototype that 

transforms SimModel into Modelica data based on 

different Modelica libraries. 

SimModel is a data model based on an XML Schema 

Definition (XSD), using an XML document to save 

and exchange model data with the other simulation 

tools. An important work from Reisenbichler et al. 

(2006) illustrates the possibility to exchange model 

data between the Modelica simulation platform 

Dymola and another engineering environment via an 

XML document. However, they focus on storing the 

Modelica model in a tree-structured XML document, 

after loading the XML data to generate the 

corresponding model for Dymola via an XML file 

parser. We focus on resolving the model-to-model 

transformation when the source data model, i.e., the 

SimModel, is different to the target data model 

developed in Modelica language and our work uses an 

XML document as a data container to support the data 

exchange and conversion between them. 

The model transformation from SimModel to 

Modelica presents a unique challenge that must 

account for significant differences in their respective 

model structures. For example, the model component  
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and parameter definitions, the modeling hierarchy, 

and level of detail (LOD) of SimModel and Modelica 

differ substantially. 

This paper focuses on detailed technical development 

of the model transformation system. A system level 

perspective for the overall conversion process which 

includes Modelica and use case examples is described 

in Remmen et al. (2015). The following sections 

present details of the research methods, system 

implementation and limitations discussion. The paper 

concludes with the current progress and future 

developments. 

METHODOLOGY 

This section describes the transformation system 

developed for linking BIM with different Modelica 

libraries. Figure 1 illustrates the overall system where 

SimModel acts as the BIM container to save BIM data, 

for example, HVAC, geometry, property data of 

HVAC systems and equipment, simulation 

configurations, etc. The SimModel schema is the XSD 

of the SimModel data model, defining five different 

sub-schema namespaces saving and organizing model 

data and their relationships, such as the building 

topology. Based on the original work of O’Donnell et 

al. (2011), we extend the SimModel schema structure 

for saving additional simulation data required by 

different Modelica libraries. While SimModel only 

entails the predefined LOD originating from 

EnergyPlus, Modelica allows the definition of deeper 

LODs. The increased LOD of Modelica requires the 

ability for the user to add additional data to SimModel, 

and the new, extended SimModel data model is named 

SimModel+. All the SimModel data are finally saved 

in an XML-based format file named SimXML.  

After saving BIM data into SimXML, the resulting file 

is then loaded into system memory and parsed by our 

transformation system based on an API generated by 

a technique named XML data binding. During the 

SimXML file parsing, the transformation system 

builds a dynamic hierarchy structure representing the 

different data objects of SimModel, for example, 

different building elements, HVAC systems and their 

distribution inside the building envelope. 

As the SimModel structure is different to commonly 

used Modelica libraries developed for BEPS (Cao et 

al., 2014 and Wimmer et al., 2014), we develop a 

mapping rule schema to represent the data model of 

mapping rules between SimModel and different 

Modelica libraries. Simulation engineers can 

efficiently re-use this mapping rule schema to define 

different sets of mapping rule instances for different 

target Modelica libraries. The system loads a set of 

user-defined mapping rules handling the data 

transformation from SimModel into a specific 

Modelica library.  

All corresponding parts of our transformation system 

are implemented in the C++ programming language, 

in order to satisfy the requirements of model 

transformation speed and the access to low-level 

system features, such as virtual memory allocation. 

C++ offers advanced programming features, e.g., 

objects, inheritance, and polymorphism, while also 

providing the facilities for low-level memory 

manipulation. Thus, C++ is immensely popular, 

particularly for applications that require speed and/or 

access to some low-level system features. 

Afterwards, the mapped or translated objects and 

properties for Modelica code generation can be 

retrieved and controlled by other script-based 

languages, like Python, via a generic API developed 

in our transformation system. Script programming 

languages, like Python, are heavily used for pre- and 

post-processing of Modelica. They are more flexible 

and easier to use for controlling the procedure of 

Modelica code generation based on techniques like 

pre-defined code templates and interpretation engines. 

This generic API, interfacing C++ and Python, 

separates the translation logic from code generation. 

The Python-based code generator then performs the 

last set of data manipulations resulting in a Modelica 

file that references only one specific Modelica library 

and is ready for a subsequent simulation. 

SimXML Data Binding and Syntax Validation 

As described in the former sub-section, the data file of 

SimModel is an XML-based file named SimXML. It 

saves all the SimModel data as a structured XML 

document that is in accordance with the syntax defined 

 
Figure 1 Transformation overview 
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by the SimModel schema. Thus, this sub-section 

introduces the XML data binding technique for 

accessing SimXML and validating its syntax. 

XML data binding is the process of extracting data 

from a structure representation of XML documents 

and presenting it as a hierarchy of objects that 

correspond to a document vocabulary. This allows us 

to manipulate SimXML data in a more natural and 

efficient way. We selected the open source, cross-

platform CodeSythesis XSD (CodeSynthesis, 2014) as 

our system XML binding parser. It is an efficient 

framework whose parser can be customized for our 

own applications. The automated XML data binding 

of CodeSythesis XSD will generate a C++ API for 

accessing the data stored in SimXML after parsing the 

SimModel schema. For the SimModel schema, 2611 

C++ classes representing different SimModel objects 

are generated for the data manipulation in a given 

SimXML file. 

The XML syntax validation performs a number of 

checks on the XML document to prevent the 

construction of an inconsistent object model, such as 

an object model with missing required attributes or 

elements. Our SimXML validation relies on the 

underlying Xerces-C++ XML parser embed in 

CodeSythesis XSD. It checks the SimXML data 

against the given SimModel schema, and outputs the 

errors found into a log file. The syntax validation is 

enabled by default and is very useful during the 

development stage to detect problems with the data 

model at an early stage. For a user of the framework, 

however, this validation should not play a significant 

role anymore. 

More detailed explanations of SimModel schema and 

the XML binding technique can be found in the work 

of Cao et al. (2014) and O’Donnell et al. (2011). 

SimModel Hierarchy Parsing and Visualization 

A model hierarchy is an arrangement of the model 

elements, e.g., objects, names, values, categories, etc., 

in which the elements are represented as being 

"above," "below," or "at the same level as" one 

another. Consequently, the SimModel consists of a 

hierarchical tree structure saving such relationships 

between different SimModel data elements. For 

example, a SimProject class object is normally the root 

node of this hierarchy tree representing a unique 

simulation project. This root node can store multiple 

links that refer to different building design 

alternatives. Each design alternative also refers to a set 

of building elements, zones, HVAC systems 

distributed inside the building, etc. Therefore, the 

SimModel hierarchy saves a set of different SimModel 

elements as well as the links between them in a tree-

based structure. 

In SimXML, each model element is given a unique 

long type id that distinguishes it from all other 

elements. Each parent element of the SimModel 

hierarchy links to a child element by saving its id. As 

a result, “parse SimModel hierarchy” is a recursive 

algorithm that detects each SimModel element, locates 

its position in the hierarchical tree and creates a tree 

node with a link to its data. 

After that, we can also recursively iterate each node of 

this hierarchy, retrieve the link to the SimXML data 

element and print out the element data for visualizing 

the created hierarchy. 

SimModel to Modelica Mapping Rule Schema 

The mapping rule concept was first introduced in 

mathematics, representing a particular transformation. 

This transformation describes the conversion of a 

source model data into a target model data under the 

constraints specified by a given equation system. As 

SimModel is significantly different from the data 

model of a specific Modelica library (Cao et al., 2014), 

e.g., AixLib or BuildingSystems, we also need to 

define a set of mapping rules that can handle the 

difference between these two different data models. 

Wimmer et al. (2015, 2014) proposed a set of different 

mapping rules that can convert the SimModel data into 

the Modelica model data defined by a specific BEPS 

library AixLib (EBC, 2014). Based on this work, we 

developed a mapping rule schema in XSD, containing 

the data model of the mapping rules between 

SimModel and different Modelica libraries. We can 

thus efficiently re-use this mapping rule schema, 

originally developed for our transformation system, to 

define different sets of mapping rule instances for 

different target Modelica libraries. 

Figure 2 illustrates the main structure of the mapping 

rule schema. Mapping rules are classified according to 

three different levels in the schema: 

1. The first level is library mapping, which is 

designed to link different mapping rule instances 

for different Modelica libraries.  

2. The second level is component mapping, which 

is responsible for mapping SimModel 

components, e.g., a boiler of the HVAC system, 

into the corresponding component of the 

Modelica library specified by the first level 

mapping. At this level, we developed four 

different mapping rule schemas, i.e., One2One 

(one component in SimModel maps to another 

one in Modelica), One2Many, Many2One, and 

Gap (a component required by Modelica is 

missing from SimModel, i.e., does not exist yet 

in SimModel schema. If possible it will be added 

to SimModel by this rule).  

3. The third level deals with the internal properties 

mapping of the components defined by the 

upper-level mapping rules. Here we implement 

the schema for five different property mapping 

rules: One2One (an One2Many property 

mapping is just a set of One2One property 

mappings), Many2One, Gap, Conversion (the 

property of a SimModel component needs to be 

converted into another data representation type 

or result of Modelica by a user-defined equation 
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system or function, e.g.; the energy efficiency 

curve from a continuous profile function into a 

matrix containing discrete signal values) and 

Combination (a property transformation 

combing multiple former property mapping rules 

defined in this level). 

For more detailed explanations and examples of 

different SimModel mapping rules, please refer to the 

work of Wimmer et al. (2015, 2014). 

 

 

Figure 2 Mapping rule schema. We define different levels of mapping rule for different SimModel elements. 
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SimModel to Modelica Mapping Rule Filtering 

Czarnecki and Helsen (2006, 2003) discussed 

fundamental work on data model transformation. In 

context of their work we can view transforming 

SimModel data model to Modelica code as a special 

case of model-to-model transformations. We only 

need to provide the meta-models for the source model 

and the target programming language as well as the 

transformation defined with respect to the meta-

models. A transformation engine transfers the source 

model data into the target programming language 

model (see Figure 3). 

In our case, the source model is SimModel and the 

target language is Modelica. The transformation is an 

instance of the mapping rule schema and the 

transformation engine contains a set of filters 

translating the model data by filtering the mapping 

rule instance. The source model data is stored in 

SimXML file and the target programming language 

model is the Modelica code, based on a specific BEPS 

library. 

A meta-model describes the type of model and 

typically defines the abstract syntax of a modelling 

notation (semantics information of the data model, 

such as the name list of SimModel APIs and the 

instance creator for each API at runtime of our 

system). In addition to this theory, Modelica is a 

generic programming language designed for different 

kinds of simulation tasks in engineering. The data 

models of different Modelica BEPS libraries differ 

from each other. Therefore, it is not feasible to create 

the meta-model for each different Modelica library. 

On the contrary, we analyze differences between their 

data models and SimModel by defining and 

implementing the same use cases, both in SimModel 

and each sub-library developed within the Annex 60 

base library (Remmen et al., 2015). Afterwards, we 

study possible data mapping rules between SimModel 

and these BEPS libraries by analyzing the use case we 

implement on both sides. The output of this study 

describes the mapping rule schema we developed in 

the former sub-section. 

For creating the meta-model of SimModel, we use a 

technique named reflection or self-reflection. In 

computer science, reflection is the ability of a 

computer program to examine and modify the 

structure and behavior (specifically the values, meta-

data, properties and functions) of the program at 

runtime (Malenfant et al., 1996). This technique 

allows the handling of a SimModel object indirectly 

via a SimModel meta-object and represents a 

particular kind of meta-programming. This program 

concept was born from object-oriented programing 

(OOP), e.g., C++ programing. Therefore, as 

everything in OOP is an object, a SimModel data class 

can also be treated as an object. With this so-called 

meta-object, we can manipulate every feature related 

to that class, like its constructor, methods, attributes, 

and so on. In our system development, we implement 

our SimModel meta-model based on the API provided 

by the QMetaObject class of the Qt library. The Qt 

Meta-Object System is responsible for maintaining the 

runtime type information of different SimModel 

objects, such as HVAC components and properties. A 

single QMetaObject instance is created for each 

SimModel data class that is used in our application, 

which stores all the meta-information for the 

SimModel data class. The API of a QMetaObject is a 

very flexible solution for handling large third party 

libraries, like the SimModel schema. 

Based on the transformation theory we introduced in 

the beginning of this sub-section, the next step consists 

of calling a transformation engine to transfer the 

source data model SimModel in SimXML into the 

target Modelica code. The transformation engine 

contains a set of different mapping rule filters that 

correspond to the different mapping rules developed 

in the mapping rule schema. The corresponding rule 

filter processes each mapping rule in three stages: 1) 

The first stage is concerned with parsing the mapping 

rule content from its XML-based rule data file via the 

API generated from mapping rule schema based on 

XML data binding. 2) The rule filter needs to create or 

call a SimModel meta-object instance to retrieve the 

SimXML data specified by the mapping rule. 3) The 

rule filter will execute the data operation, e.g., 

equations and functions defined by the mapping rule 

to generate the Modelica data converted from 

SimModel. The overall filtering process determines 

 

Figure 3 Basic concepts of model transformation 
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the model transformation strategy. Users are only 

concerned with providing the mapping rules. 

Generic API for Modelica Code Generation 

This sub-section introduces a generic API developed 

for interfacing C++ and the script programming 

language Python, in order to better control the 

Modelica code generation. 

We developed our first prototype for this generic API 

based on a technique named language binding. In 

computer science, a binding from a programming 

language to a library is an API providing glue code to 

use that library in a particular programming language 

(Binding, 2012). In the context of our generic API, 

bindings are wrapper libraries that bridge the C++ and 

Python programming languages in order to re-use the 

SimModel API generated for C++ in Python. 

We use ctypes (ctypes, 2014) as one of the binding 

libraries to wrap the SimModel API for data access out 

of Python. ctypes provides C compatible data types, 

and allows calling functions in DLLs or shared 

libraries from Python. The other binding libraries, like 

Cython, are also currently under testing in the project 

development. 

In the current prototype development, we exposed the 

mapped or translated SimModel components and their 

internal properties into a Python-based Modelica code 

generator via the ctypes wrapper. In order to provide 

Python with full controls on SimModel internal data, 

we also exposed more data objects from the SimModel 

hierarchy into Python via the generic API.  

Figure 4 illustrates our current hierarchy of objects 

contained in SimModel. As illustrated in the parsed 

hierarchical structure, SimProject is the root element 

of the SimModel data model, which represents a BIM-

based simulation project. SimProject in turn refers to 

multiple different child elements including SimSite, 

which defines a simulation site containing one or more 

building models, i.e. SimBuilding. A SimBuilding 

element then refers to the geometry data of the 

building envelop, such as the space boundary 

SimSpaceBoundary via the thermal zone element 

SimZone assigned. The parent HVAC system element 

is SimSystem, which in turn refers to different HVAC 

sub-systems. 

For example, the experimental use case given by 

Remmen et al. (2015) defined a hot water loop system 

as: 1) a water supply side sub-system; 2) a water 

demand side sub-system and 3) a controls sub-system. 

These sub-systems contain sets of individual HVAC 

components such as fans, pumps, heating coils and 

cooling coils. 

LIMITATIONS 

The proposed transformation framework is an 

enhancement of former works, e.g., Yan et al. (2013), 

Jeong et al. (2014), Cao et al. (2014) and Wimmer et 

al. (2014). As previous work focused on linking one 

specific Modelica library to the BIM side, naming 

 
Figure 4 Generic API for Python. We show the hierarchy of SimModel objects exposed via the API in the 

development. 
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conventions and data representations differ and are not 

suitable for linking different libraries. 

Yan et al. (2013) and Jeong et al. (2014) use 

proprietary APIs of Auto Revit to convert only the 

geometry data of the BIM model into a specific 

Modelica library. The solution results in a non-open-

standard and is non-generic for converting different 

BIM data formats, e.g., IFC and SimModel. The 

conversion of the internal HVAC systems from BIM 

has not yet been resolved by their approaches. 

Cao et al. (2014) and Wimmer et al. (2014) developed 

a set of mapping rules from open BIM to a specific 

library. Their works do not provide a generic 

translation framework to reuse the data translation 

logic (the rule schema) of these rules for different 

libraries. Thus, they might need a considerable effort 

to define new mapping rules for different libraries. 

Both of these shortcomings were addressed in this 

work. The authors are aware that the presented 

framework also has some limitations. The conversion 

from BIM to a Modelica model is not fully automatic 

yet, e.g., if a component required by the Modelica side 

is missing in SimModel, i.e., it does not exist in 

SimModel schema yet, it has to be added into 

SimModel manually by a user-defined mapping rule. 

The mapping rules are an example of adaptable 

components. To adjust this part, the user needs deep 

knowledge of both the information model structure 

and the Modelica model. 

As a short summary, this work makes the BIM 

transformation system able to handle different 

Modelica libraries developed for different simulation 

requirements.  

CONCLUSIONS AND FUTURE WORK 

This paper presents the technical development of a 

flexible model transformation system to link BIM with 

different Modelica libraries for supporting integrated 

architectural design and BEPS. We focus on the 

schema definition and interpretation of mapping rules 

within the transformation system: 

1) We developed a fundamental data representation 

schema in XSD to define possible data mapping 

relationships between BIM and Modelica. This 

representation schema stores generic mapping rules 

for translating different levels of BIMs data to 

Modelica models, such as the library level, HVAC 

components level, and the internal property level of 

HVAC components.  

2) Based on the representation schema developed in 

1), simulation experts can easily define a specific data 

transformation process between BIMs and different 

Modelica libraries by using the mapping rules.  

3) The third step consisted of interpreting the XML-

based mapping rules defined in 1) and 2). This 

interpretation step converts actual HVAC component 

1 IEA EBC Annex 60, http://www.iea-annex60.org 

instances and their properties from the BIM world into 

the Modelica world. The result of this process is then 

used to generate Modelica models within the 

subsequent steps in the framework. 

4) The generic API prototype, interfacing C++ with 

Python, is developed for the Modelica code 

generation. This API satisfies low-level application 

requirements like speed, while also providing the 

facilities for high-level control of Modelica code 

generation via script-based language. It separates 

translation logic from code presentation. 

The proposed flexible model transformation is an 

enhancement to current work by demonstrating the 

potential to develop a generic solution for linking BIM 

with different Modelica libraries in order to accelerate 

the BEPS development in Modelica. While the 

building simulation domain has its specific challenges, 

it should be possible to adapt most of the developed 

concepts and tools to other simulation domains. In 

particular, the separation of generic code and specific 

data transformation rules make this process adaptable. 

Our future work will concentrate on the following sub-

tasks: 1) Enrich the SimModel data exposed by the 

generic API for the new application requriements. 2) 

Implement the baseline use cases in the other 

Modelica libraries we are using, like BuildingSystems 

(Nytsch-Geusen et al., 2013) and Buildings (Wetter et 

al., 2014). 3) Further develop more complicated use 

cases on different Modelica libraries. 4) Test the 

transformation system comprehensively by a set of use 

cases developed on different Modelica libraries. 
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