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ABSTRACT
We describe the prototype of a next-generation im-
plementation of EnergyPlus, DOE’s whole-building
energy simulation engine. This new implementation
breaks EnergyPlus into a set of component models
with clearly defined input and output ports. It instanti-
ates these components and their connections from the
EnergyPlus input file – thereby not disrupting applica-
tions that use EnergyPlus – and then simulates them
using a discrete event simulator. This new structure
should allow EnergyPlus to evolve more rapidly and
robustly by decoupling component modules from the
numerical solver. It also allows models to be exported
for integration with building control systems.
We prototyped this new implementation using the
open-source Ptolemy II framework. We encapsulated
the computing modules as Functional Mockup Units
(FMUs) for Model Exchange. The system of equa-
tions defined by the connection of the FMUs is inte-
grated using Quantized State System (QSS) simula-
tion, a novel method that partitions systems of differ-
ential equations and integrates them asynchronously,
using step sizes that are based on the time rate of
change of the individual state variables.
We present a numerical example that illustrates the
asynchronous integration and numerical benchmarks
of a multizone building model with a radiant slab. We
compare the computing time among our prototype,
EnergyPlus version 8.2 and the Dymola 2015 FD01
Modelica simulation engine.

INTRODUCTION
EnergyPlus is DOE’s open-source whole building en-
ergy simulation program (Crawley et al., 2001). It
is a state-of-the-art building energy simulation pro-
gram with a significant user base that serves as the
basis for both energy-efficiency codes and a growing
ecosystem of commercial software. It is also near-
ing its twentienth birthday, having originated from a
union of DOE-2 (Winkelmann and Selkowitz, 1985)
and BLAST (BLAST, 1999) in 1996.
As EnergyPlus has grown, its traditional monolithic,
imperative structure – which intermingles governing
equations of physics, numerical solution methods and
idealized control schemes – has become more burden-
some. It makes EnergyPlus difficult to maintain and
extend as solvers for new models must be carefully in-
tegrated with the existing solver. It complicates mod-

eling of modular HVAC systems as it is rigidly orga-
nized around traditional primary and secondary HVAC
loops. And it is not suited for simulation of con-
trol schemes other than rule-based supervisory control
sequences because its load-based models have inputs
and outputs that are semantically different from actu-
ator commands and sensor signals, respectively, and
the numerical methods cannot handle fast dynamics,
events, certain sampled systems and finite state ma-
chines. EnergyPlus’ control language is also bespoke
and meaningless outside of EnergyPlus itself. In short,
EnergyPlus is a self-contained ecosystem that provides
few opportunities to leverage or reuse outside compo-
nents, platforms, technologies, and expertise.
Spawn-of-EnergyPlus (SOEP) is a prototype using a
partially new implementation of EnergyPlus that ad-
dresses these structural issues. SOEP leverages two
open standard simulation technologies – the Modelica
language (Mattsson et al., 1999) and the Functional
Mockup Interface (FMI) (Blochwitz et al., 2011) for
co-simulation and model-exchange. Modelica is a
declarative modeling language in which developers
write the governing equations of the system and link
them with an external, domain-indepdendent solver.
By separating models from numerical solvers, Mod-
elica allows domain experts to focus on their domain
while leveraging outside expertise to develop high-
performance simulation platforms. Modelica makes
it easy to prototype new models, to share models be-
tween simulation environments, and even to repurpose
models for other applications. In the specific case
of buildings, Modelica control models can be directly
translated into working controller code – unlike cur-
rent models written in EnergyPlus Runtime Language
(ERL).
SOEP exploits FMI to encapsulate existing Energy-
Plus models for envelope heat transfer, lighting, and
airflow as Functional Mockup Units (FMU) and simu-
late them together with new HVAC and control FMUs
generated from Modelica.
SOEP selects, instantiates, and connects FMUs by in-
terpreting EnergyPlus’ existing input files and is there-
fore backward-compatible with EnergyPlus. FMU
time-stepping, state variable integration, and solution
of the algebraic loops formed by connecting FMU are
performed by the open-source actor-based framework
Ptolemy II. The specific time integration method used
is Quantized State System (QSS) (Zeigler and Lee,
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1998; Kofman and Junco, 2001; Cellier and Kofman,
2006; Kofman, 2003; Bliudze and Furic, 2014). QSS
methods schedule a module’s computation in propor-
tion to the time rate of change of that modules state
variables. They allow for explicit scheduling of state
events, making them attractive for control simulation.
The remainder of the paper is structured as follows.
After describing SOEP’s use cases, we describe back-
ground work that we use for our implementation.
Then, we describe our implementation and provide nu-
merical benchmarks. We conclude with related work
and open research questions.

USE CASES
SOEP must be able to simulate all physical phenom-
ena that are typically encountered in building en-
ergy simulation, including heat and moisture transfer
through the building fabric, daylight illuminance, nat-
ural ventilation, pressure driven flow distribution in
ducts and pipe networks, HVAC systems, chilled wa-
ter plants, electrical systems, water usage and occu-
pant behavior. In addition, it must be able to model
ideal and actual control sequences. These capabilities
should support the following use cases:
1. Whole building annual simulation.
2. Equipment sizing.
3. Controls design.
4. Nonlinear optimization such as for design or model

predictive control, input/output linearization for
controls design, or system identification to support
adaptive models.1

5. Extraction of component and subsystem models in
order to execute them in isolation for given input
and initial states, or to upload them to software that
can communicate with building controllers, such as
through Niagara Tridium.

BACKGROUND
This section describes key underlying technologies.

Actor-based modeling with Ptolemy II
SOEP uses the Ptolemy II simulation framework,
whose module abstraction is that of actors, which are
components that communicate through ports that send
and receive data. These data are called tokens and can
contain various objects such as a double value, a string
or more complex data types. A Ptolemy II simula-
tion model consists of instances of actors whose input
and output ports are connected, and a director. The
director is responsible for sending tokens from out-
put ports to input ports and for invoking the actors’
computation methods. The director implements the
model of computation, such as discrete event domain,
continuous time domain for solving ordinary differen-
tial equations (ODE), or algebraic loop solver. Most

1These applications have in common that they all require re-
peated simulations with given initial states for any simulation pe-
riod, and that outputs and state trajectories needs to be differentiable
with respect to input signals.

Ptolemy II actors are polymorphic, i.e., they can be
used with different models of computation.
Whereas EnergyPlus is a discrete time simulation,
SOEP uses the discrete event domain of Ptolemy II,
in which actors send each other time-stamped events,
and the director processes these events in time-stamp
order. This style of discrete event simulation is widely
used for large, complex systems (Cassandras, 1993;
Zeigler et al., 2000; Fishman, 2001). The particular
implementation in Ptolemy II has a sound, determinis-
tic semantics (Lee, 1999; Matsikoudis and Lee, 2013).

Model integration using FMI
FMI is an open standard for co-simulation and model-
exchange. In co-simulation, a model including its
time integration algorithm is exchanged. Hence, given
state variables, inputs and a communication time step,
the FMU returns new state variables and outputs. In
model-exchange, the time integration of the differen-
tial equations has to be done by a master algorithm.
Hence, given state variables, inputs and time, the FMU
returns the time derivatives and outputs. FMI de-
fines a simulation application programming interface
(API), uses XML to declare model properties and ca-
pabilities, and acts as a container for source code, bi-
naries, and weather files. More than 60 simulation
tools support the FMI standard, including EnergyPlus
which uses it to support co-simulation with engines
like CONTAM (Walton and Dols, 2013).
SOEP calls for re-factoring EnergyPlus internally into
computing models encapsulated as FMUs. Energy-
Plus’ hand-crafted C++ models for envelope heat-
transfer, lighting, and airflow – which use special nu-
merical approaches that exploit the structure of the cal-
culation – will be reused directly. HVAC and con-
trol models will be gradually migrated to Modelica
implementations. The use of FMI internally will al-
low SOEP to incorporate external models as long as
they conform to the FMI standard, the Modelica stan-
dard, or are Ptolemy II actors. Specifically, it will al-
low manufacturers to provide models that characterize
their equipment in either source (e.g., Modelica or C)
or binary FMU forms.

Modular modeling with Modelica
Modelica is an open-standard language for object-
oriented equation-based modeling. In Modelica, de-
velopers build models by writing their differential, al-
gebraic or discrete equations. Models can be hierar-
chically composed into larger ones, either textually or
graphically in a schematic editor. The system of equa-
tions is analyzed and manipulated using computer al-
gebra (Cellier and Kofman, 2006), translated to C and
then linked with and solved by an external, domain-
independent solver.
Originating in the automotive and aerospace indus-
tries, Modelica is a robust standard with significant
support across multiple sectors and a growing ecosys-
tem of tools capable of solving large real-world prob-
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Figure 1: Plant with feedback control loop and QSS solvers that solves (1) for six hours.

lems. For building energy simulation, several open-
source Modelica libraries are in active development,
namely AixLib (Lauster et al., 2013), Buildings (Wetter
et al., 2014), BuildingSystems (Nytsch-Geusen et al.,
2012), and IDEAS (Baetens et al., 2012). These
have been harmonized and refactored to extend from
a common core Modelica library within the Interna-
tional Energy Agency project Annex 60 “New gen-
eration computational tools for building and commu-
nity energy systems based on the Modelica and Func-
tional Mockup Interface standards” conducted under
the Buildings and Communities (EBC) Programme.
SOEP will use HVAC and control models from these
libraries. Eventually, Modelica will displace ERL as
SOEP’s control language.

Quantized-State Systems (QSS)
SOEP uses recently-developed QSS methods to inte-
grate ODEs. In a classical ODE simulator, a step-size
control algorithm determines sample times, and a sam-
ple value is computed at those times for all states in
the model. In constrast, in a QSS simulation, each
state has its own sample times, and samples are pro-
cessed using a discrete event engine in time-stamp or-
der. The “next” sample time of each state is the time at
which that state’s value changes by a pre-determined
tolerance called the quantum and is predicted using
the state’s time derivative. Higher-order QSS variants
incorporate knowledge of higher-order derivatives for
more refined predictions(Migoni et al., 2013).
For example, consider an ODE of the form ẋ(t) =
f(x(t), u(t)), with initial conditions x(0) = x0,
where x(·) ∈ R and u(·) ∈ Rm, for some m ∈ N.

The step size is computed based on the time rate of
change of ẋ(·) – and possibly higher order derivatives
– and the time when input signals u(·) change their
value. This naturally decouples systems of ODEs, as-
signing short steps for fast dynamics like an integrator
of a PI-controller, and large steps for slow dynamics
such as the thermal mass of a storage tank.

For some systems, QSS yields efficient simulation by
producing samples only when predicted state trajecto-
ries exceed the quantum. Moreover, state events can
be scheduled using an explicit equation, avoiding it-
eration in time, which makes them very promising
for HVAC and control simulation. Unlike classical
ODE solvers, QSS solvers never require backtracking,
greatly simplifying simulation.

Example: Closed-loop plant control

Figure 1 shows a simple model of a plant with a PI
controller. The temperatures of the plant evolve as

C I
dT (t)

dt
=


−2 1 0

1 −2 1

0 −2 −2

 UA T (t)

+


UA Tamb + Q̇ y(t)

0

0

 , (1)

with initial temperatures T (0) = (20, 20, 20)◦C,
where C is the heat capacity, I is the identity matrix,
UA is the heat conductance times area, Tamb is the
ambient temperature, Q̇ is the heater capacity and y(t)
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is the control signal. The PI controller equation is

y = Kp e(t) +KI

∫ t

0

e(s) ds (2)

with output limiter, where e(·) is the difference be-
tween Tset = 25◦C and the sampled value of T1. The
controller is sampled every 2 minutes. The plot in the
lower left corner shows the trajectories of the temper-
atures T (t) and the integral action yI(t). Each point at
which the respective differential equation is evaluated
is indicated by a dot. We used the QSS2 algorithm, and
selected a large absolute and relative quantum of 10−2,
which makes for better visualization of state variable
recomputation events.
The plot shows that the QSS method evaluates the fast
changing yI(t) 43 times, T1(t) 26 times and T2(t) and
T3(t) each only 6 times as their time rate of change is
smaller. These numbers of state updates are remark-
able as the controller is sampled 181 times, but the
QSS algorithm does not integrate its state if the input
change is smaller than the quantum, and therefore it
updates the states considerably less often. By com-
parison, simulating the same model using the classical
Runge-Kutta 2(3) ODE solver requires 362 integration
steps. With Runge-Kutta, the number of time steps is
sensitive to the sampling interval. Such behavior is
also commonly observed with solvers such as DASSL
and Radau that are often used in Dymola (Wetter,
2009). In contrast, the number of QSS integration
steps is not sensitive to the sampling interval, promis-
ing efficient simulation of control sequences.

SPAWN-OF-ENERGYPLUS PROTOTYPE
This section describes the SOEP prototype and its im-
plementation in Ptolemy II. It also evaluates SOEP us-
ing numerical benchmarks.

Software architecture
Figure 2 shows the SOEP software architecture. Client
applications – such as OpenStudio – write an Ener-
gyPlus input data file (IDF) and consume EnergyPlus
results. A translator – which has not yet been imple-
mented – interprets the IDF to produce a list of mod-
ules, a listing of module output-to-input port connec-
tions, simulation start and stop time, and optional data
such as a algorithms for time integration and solution
of nonlinear equations, including their tolerances.
The SOEP master algorithm is implemented in
Ptolemy II and available through the CyPhySim con-
figuration (Brooks et al., 2015). The master algorithm
instantiates the FMUs, evolves time in the FMUs, in-
tegrates the state variables, solves algebraic loops and
synchronizes FMU inputs and outputs.
SOEP supports building operations in a number of
ways. SOEP can participate in the Internet of Things
by using Ptolemy II actors that implement a JavaScript
execution environment in which scripts can safely be
executed to communicate with sensors, actuators and

services. Such JavaScripts can also run a service with
a RESTful API to provide other devices with informa-
tion from SOEP (Latronico et al., 2015). Also, FMUs
simulated within SOEP can be imported into building
automation systems such as Tridium Niagara (Nouidui
and Wetter, 2014) for control or monitoring. Finally,
the BACnetReader and BACnetWriter from the
BCVTB (Wetter, 2011) could be ported to Ptolemy II
to allow direct two-way run-time data exchange be-
tween SOEP and BACnet.

Mathematical requirements
Building simulation leads to systems of ordinary and
partial differential equations that are coupled to al-
gebraic and discrete equations, and that have a wide
range of numerical structure. Control and HVAC sim-
ulation has time constants in the order of seconds and
are governed by equations that are often sparse and
form an irregular solution graph. Controllers can trig-
ger events if input signals cross a threshold. Heat con-
duction in solids requires solving ODEs with a band-
diagonal structure that arised from the spatial dis-
cretization of the partial differential equations. Time
constants are typically on the order of minutes to hours
for walls, floor and ceiling slabs, but can be weeks to
years for ground coupled heat transfer. It is not clear a
priori what time integration algorithm works best for
this variety of problems. Therefore, for SOEP we re-
quire that different time integration algorithms can be
combined.
In SOEP, QSS methods can be combined with conven-
tional ODE solvers and discrete time integration al-
gorithms because Ptolemy II allows to hierarchically
compose different models of computations within a
single model. This hierarchical composition is done
by instantiating an actor that contains its own director.
For example, the discrete event domain can contain an
actor that orchestrates the execution of its own actors
according to the continuous time semantics. See (Lee
and Zheng, 2007) for examples.
To simulate such systems efficiently and in a numeri-
cally robust way, SOEP require the following mathe-
matical properties.
1. Models that describe physical processes must be

formulated such that output and state trajectories
are once continuously differentiable in the param-
eters of the model and the input signals. This is a
basic requirement for Newton solvers, ODE solvers
and to establish existence and uniqueness of a solu-
tion to the ODE.

2. Numerical solvers must expose their tolerances.
This is required for use of the model within an op-
timization, or whenever nested solvers are present.

3. Computing modules must declare which outputs
and state derivatives directly depend on which in-
puts.2 This is required to discover the sparsity of the

2 We say that an output y depends directly on an input u if the
output is an algebraic function of the input u. If y depends only on
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Figure 2: Architecture of SOEP and its interaction with model libraries and building automation systems.

model, to detect algebraic loops and to efficiently
use QSS time integration algorithms.

4. All computing modules must support saving and
reinitialization of state variables. This is required
to solve optimal control problems, model lineariza-
tions and to implement certain parallel time integra-
tion algorithms.

5. All FMUs must be deterministic3 and the master al-
gorithm must guarantee a deterministic execution
of any composition of deterministic FMUs.4 This
ensures that phenomena observed in a simulation
are a result of the model structure and parameters,
and not of arbitrary choices in the evaluation order
of seemingly independent modules.

Additions to Ptolemy II
We added the following functionality to Ptolemy II for
the SOEP prototype.

FMI import

We added FMI import capabilities in Ptolemy II. Mod-
els can be imported as FMUs for co-simulation or
model-exchange. As FMUs for co-simulation provide
their own time integration algorithm, this allows use
of time integration methods such as the Conduction
Transfer Functions that are currently used in Ener-
gyPlus. FMUs for model-exchange do not contain a
time integration algorithm. They can be imported for

a state variable x (and, possibly, on a different input û), then we say
that y does not depend directly on u, even if the time rate of change
dx/dt directly depends on u.

3 A deterministic FMU is an FMU where the output values and
states are uniquely defined given initial conditions, input values, and
communication points.

4 A deterministic composition of deterministic FMUs is one
where for a valid sequence of communication points, given initial
conditions and inputs from outside the composition, the values of
outputs of the deterministic FMUs are uniquely defined. See Lee
and Zheng (2005) for a rigorous definition of determinism.

integration using either QSS methods or other ODE
integrators that are provided through the continuous
time domain of Ptolemy II. FMUs are encapsulated as
Ptolemy II actors and can therefore be combined with
other actors provided by Ptolemy II.

QSS Solver

The QSS solver is a standalone package which can
be used to integrate the state derivatives of a sys-
tem of initial-value ODEs. It contains the explicit
QSS methods QSS1, QSS2 and QSS3, as well as the
linearly-implicit methods LIQSS1 and LIQSS2 (Kof-
man, 2003; Migoni et al., 2013).

QSS Director

A new QSSDirector extends Ptolemy II’s discrete-
event model of computation to include the QSS solver.
This director has additional fields for specifying the
type of QSS solver and its quantum, which are used
by actors that perform QSS integration.

FMU QSS actor

The new FMU QSS actor is used to import FMUs
2.0 for model-exchange. It unzips the FMU, parses
the model description file, extracts the state deriva-
tives which need to be integrated, creates input and
outputs ports, integrates the state derivatives using a
QSS solver, requests a time event for the next update
of the state variables, and sends the state variables to
the output ports.

Token that contains value and derivatives

FMU QSS actors communicate via a new SmoothTo-
ken data type which contains the value and optionally
the derivatives of a discrete time signal. The deriva-
tives are used by second and third order QSS methods.
They are also used to align the values of tokens that
are produced at different times. For example, adding
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Figure 3: Normalized run-time for annual simulation.
Absolute runtime was 68 seconds for the one room
model, and 488 seconds for the nine room model.

the tokens (x1, ẋ1) = (0, 2) produced at t = 0 and
x2 = 0.2 produced at t = 1 yields at t = 1 a token
with value and derivative (2.2, 2).

Algebraic loop solver

We also added a mechanism for specifying algebraic
loops, and implemented algebraic loop solvers using
successive substitution, a Newton-Raphson solver, and
a homotopy method (Allgower and Georg, 2003). The
SOEP model builder is given explicit control over the
solution method and initial guesses.

EVALUATION
To evaluate the SOEP protoype, we conducted annual
simulations of i) a room with a window and a radi-
ant heating system that is embedded in the concrete
slab, and b) a 3-by-3 nine room configuration that cou-
ples common walls and floor/ceiling slabs. For com-
parison, we conducted the same simulations in Dy-
mola 2015 FD01 and in EnergyPlus 8.2. The room
geometry is identical to ASHRAE Standard 140 case
600FF (ASHRAE, 2007).
As we have not yet factored the envelope, lighting, and
airflow modules out of EnergyPlus, we used Modelica
Buildings Library models. We exported the models as
five FMUs for the one-room case, and 45 FMUs for the
nine-room case. We also built a version of the model in
EnergyPlus 8.2 and a version that uses Modelica with-
out any FMUs. As the Buildings library uses finite
differences for the heat conduction, we configured En-
ergyPlus to use finite differences, with a time step of
3 minutes, which is the largest time step possible be-
fore the EnergyPlus simulation became unstable. We
configured the number of states to be similar between
the two implementations: Modelica had 88 states and
EnergyPlus had 64 states. For the QSS simulation, we
used QSS2 with a quantum of 10−3. To simulate the
Modelica model, we used Dymola 2015 FD01 with the
DASSL solver with its default tolerance of 10−4, as
these values led to good agreement between the QSS2
and Dymola simulations.
In these benchmarks, FMUs with QSS was 30% and

46% faster than EnergyPlus, but slower than Dymola.
Profiling showed that for the nine-room example, 33%
of the computing time was spent in Ptolemy II, and
67% inside the FMUs. The 67% includes the Java-to-
C overhead, which in some experiments made up 1.4%
of run-time. Note that QSS2 called the FMUs twice at
each step to approximate high order derivatives. Re-
ducing the number of FMU calls, for example by us-
ing higher order methods, may further reduce run-time
as fewer data tokens have to be sent to ports. Further-
more, parallelism in calling FMUs for simulation and
derivative approximation has not yet been exploited.

RELATED WORK
The idea for equation-based simulation is not new,
even in the building space. In the 1980’s and 1990’s,
researchers experimented with systems like SPARK
(Simulation Problem Analysis and Research Kernel,
(Sowell et al., 1986)) and NMF (Neutral Model For-
mat (Sahlin and Sowell, 1989)).
Related work includes an FMU-based co-simulation
environment for buildings developed by TU Dres-
den. Broman et al. (2013) present a co-simulation al-
gorithm and required extensions for FMI for determi-
nate composition of FMUs for co-simulation. Broman
et al. (2015) define a suite of requirements for a fu-
ture hybrid co-simulation version of FMI that allows
mixing continuous time and discrete event signals.
Gunay et al. (2014) also investigated a discrete event
simulation for whole building simulation. They report
that fixed time step solvers used with adaptive occu-
pant models can cause differences of 40% in cooling
energy if the time step is varied between 1 and 30 min-
utes, and 15% in peak cooling demand if varied be-
tween 4 and 60 minutes. They concluded that proper
event handling is important for simulation of adaptive
occupancy models. Their numerical method can also
be selected in the prototype that we present here.

CONCLUSIONS AND FUTURE WORK
We have demonstrated the feasibility of our proposed
redesign of EnergyPlus. Although the properties of
the QSS methods – in particular the time scale sepa-
ration and explicit event handling – imply high per-
formance for building simulation, additional experi-
ments are needed to test this hypothesis. Such ex-
periments are on-going. The question of which ODE
solvers work best for the various equations encoun-
tered in building simulation – controls, HVAC equip-
ment dynamics, envelope heat and moisture transfer,
and ground heat transfer – is also open.
Providing individual HVAC equipment and control
models as FMUs has the advantage that their code
can be provided to the user in compiled form, thereby
avoiding compilation prior to the simulation. How-
ever, this component-level packaging complicates as-
sembling components to systems because components
have causal rather than acausal interfaces. It also pre-
cludes certain optimizations – the use of alias vari-

Proceedings of BS2015: 
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 408 -



ables (e.g., for mass flow rates that are common
across all equipment models of an air flow leg), com-
mon subexpression elimination (e.g., for computing
medium properties that are shared by multiple equip-
ment models) and block lower triangularization – from
being performed at the system level. Also, as the size
of the FMUs decreases and their number increases,
the computations required to synchronize the FMUs
increase. There would seem to be an optimum size
that allows sparse evaluation of FMUs while minimiz-
ing synchronization overhead. See also Wetter et al.
(2015) for a discussion.
We have not yet explored the potential for parallel
computation. This could be employed in evaluating
higher order derivatives and within the discrete event
simulation.
Further work also remains to be done on algebraic loop
solving and on event handling if events are triggered
inside an FMU.
Finally, much R&D remains in the implementation
and optimization of FMUs and QSS methods for
whole building simulation.
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