
AN OPEN FRAMEWORK FOR INTEGRATED BIM-BASED BUILDING
PERFORMANCE SIMULATION USING MODELICA

P. Remmen1a, J. Cao1b, S. Ebertshäuser2, J. Frisch1b, M. Lauster1a, T. Maile1b,

J. O’Donnell3, S. Pinheiro3, J. Rädler4, R. Streblow1a, M. Thorade4, R. Wimmer1b,
D. Müller1a, C. Nytsch-Geusen4, C. van Treeck1b

1RWTH Aachen University, 1aE.ON ERC EBC and 1bE3D, Aachen, Germany
2Karlsruhe Institute of Technology, Department BLM, Karlsruhe, Germany

3School of Mech. & Materials Eng. and Electricity Research Centre, UCD, Dublin, Ireland
4Berlin University of the Arts, Institute for Architecture and Urban Planning, Berlin, Germany

ABSTRACT

Building Performance Simulation (BPS) is a key
element in the design of energy efficient buildings.
The Modelica modelling language is becoming
increasingly important in the BPS field. The
International Energy Agency’s (IEA) Annex 60
project, “New Computational Tools for Building
Performance Simulation”, coordinates the
development of BPS in Modelica. However, data
collection and model generation are time-consuming
processes, often leading to uncertainty. One subtask
of the Annex 60 project focuses on the use of
Building Information Modelling (BIM) as basis for
building performance simulation. This paper presents
an open framework for automated Modelica model
generation from a BIM data source. The project
outcomes include open-source software tools and a
Model View Definition (MVD) for IFC to BPS
information exchange with Modelica.

INTRODUCTION
Higher energy standards and efficiency requirements
impose greater complexity on the building design
process. Consequently, the design process of new and
retrofit buildings has become increasingly complex
and requires advanced digital planning tools. A major
issue involves the linking of commonly used
software, and improving the information exchange
between the different experts involved in the design
process.

Building Performance Simulation (BPS) is a key
element in the design of energy efficient buildings.
Recently the non-proprietary, object-oriented and
equation based modelling language Modelica has
become increasingly relevant in the field of BPS
(Wetter et al. 2014).

The International Energy Agency’s (IEA) Annex 60
project “New Computational Tools for Building
Performance Simulation” is part of the Energy in
Buildings and Communities Programme (IEA-EBC),
and coordinates the development of BPS in Modelica
(Wetter and van Treeck 2015). One subtask focuses
on harmonizing and unifying model development in
Modelica. Such development is currently fragmented
and several model libraries from different institutions
exist. Each library has its own focus and thus

contains models for diverse application. Two of the
libraries, AixLib from RWTH Aachen University
(Constantin, Streblow, and Müller 2014) and
BuildingSystems from UdK Berlin (Huber, Nytsch-
Geusen, and Schünemann 2012), serve as target
libraries for the workflow shown in this paper. This
process is applicable to further libraries that take part
in Annex 60.

In addition to thermal simulation tools, architects and
engineers use BIM-based CAD tools to design
buildings and energy systems. Building Information
Modelling (BIM) is a technology used to model and
manage the digital representation of a building over
its entire lifecycle (Eastman 2011).

However, data collection and model generation for
BPS is time consuming and often leads to uncertainty
and error (Bazjanac et al. 2011), and there is limited
integration of BPS with BIM based tools found in the
wider design area. These issues restrict the more
widespread adoption of BPS amongst practitioners
during the planning and design stages.

No open, standardized and automated or semi-
automated processes for generation of Modelica
models from BIM exist today. In order to simplify
model generation, one subtask of the Annex 60
project is concerned with using BIM systems as a
direct data source for Modelica simulation. Previous
research focuses on geometry and single specific
Modelica libraries (Yan et al. 2013; Jeong et al.
2015), while in this IEA Annex 60 project the focus
is also on building HVAC systems and multiple
libraries.

Two major challenges must be considered when
developing a semi-automated data exchange process.
First, mapping data from BIM to BPS requires expert
knowledge of both BIM and BPS, which are quite
different domains, in order to define consistent
mapping rules. This mapping needs to consider
different aspects including building geometry and
heating and ventilation components (Wimmer et al.
2015).

Second, model preparation for BPS is not only a
matter of data conversion but also requires sufficient
initial boundary conditions, consistent system models
and reliable parameter sets at the system level.

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 379 -

These aspects, which include simulation knowledge,
are challenging to encapsulate within a semi-
automated process. They require flexible interfaces
that allow the user’s knowledge and additional
information to be added in an easy-to-use manner.

It is necessary to keep the exchange process from
BIM to Modelica flexible to allow the integration of
further model libraries and BIM-tools. The open
framework should feature suitable interfaces that
allow developers to link their models and tools to the
framework as well as enable users to add information
in all process steps easily.

This paper provides an overview of an open source
framework to connect BIM-based architecture and
engineering software with building energy
performance simulation in Modelica. The first
sections describe the basic assumptions, overall
application domain and software foundation. The
methodology section outlines the different steps in
our tool chain from BIM to Modelica and leads to the
workflow demonstration. The paper concludes with
the current limitations, a summary of the framework
and potential further developments.

PROCESS OVERVIEW & ITS ACTORS

An obligatory requirement for the framework is a
valid and well-formed BIM model. We distinguish
between geometry, building physics and HVAC
components as semantic model parts within a BIM.
All three semantic parts require a high model quality.
The following section describes the different parts of
the information model and prerequisites for
appropriate model quality. A well-defined BIM is the
foundation of the tool chain (Wimmer et al. 2015;
Cao et al. 2015). A well-defined BIM in the context
of BPS contains all walls and windows with respect
to different constructions as well as the HVAC

system and space boundaries. As model quality is
highly dependent on decisions during model
generation, this section also gives an overview about
the process from a user’s view. An overview of the
process and its actors can be taken from Figure 1 and
is described in the following section. This includes
model generation, model enrichment and compliance
checking for the information model, as well as the
application to our framework.

Model generation
The BIM model commonly begins with the architect
designing a designated space and usage structures
(left side Figure 1). Thereby all basic model
semantics related to the building components
(geometry and building physics) are defined within
the main morphology of the building. The model is
created with BIM-based CAD software. The use of
suitable software allows the integration of further
involved technical actors, in our case the HVAC
engineer. The architect benefits by using the IFC
(Industrial Foundation Classes) format, as IFC is a
widely used, non-proprietary and established BIM
format (International Organization for
Standardization 2013). The HVAC engineer adds
information about the HVAC SYSTEMS to the BIM
model. This includes geometry (e.g. the structure of
the piping system) and semantic information (e.g. the
pipes material). The architect or a specialist on data
exchange handling then coordinates outgoing model
data. He is also responsible for merging enriched
incoming partial models or other data to the BIM.
This is crucial to the overall consistency of the BIM
model in these collaborative activities.

Simulation-Expert

Engineer

Architect

Energy-Consultant

CAD/BIM
Building + HVAC

Modelica
Simulation Model

.SimXML+

Geometry

HVAC

.mo

Geometry
.ifc

Geometry

HVAC

HVAC

Additional
data

.mo

Geometry

HVAC

.mo

Geometry

HVAC
MVD

Figure 1: Actors involved in the framework from BIM to Modelica Simulation

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 380 -

Model enrichment
The energy consultant uses a specific Model View
Definition (MVD), which we develop within the
Annex 60 project, to read the relevant data for
Modelica simulation (middle part in Figure 1) (Cao
et al. 2015; Wimmer et al. 2015). A MVD is a subset
of the IFC-schema that defines discipline-specific
exchange requirements (Eastman 2011). The
different disciplines are thus concerned with own
specific modelling details. For example, the user
needs spatial geometry and building information
defined in the MVD to define space boundaries and
thermal zones.

Building technology systems need information on the
spatial hierarchy and need to align the overall
building model structure. The MVD defines the
required data from the IFC file. We defined the
exchange requirements with a focus on building
simulation in Modelica. The energy consultant
collects this data from the IFC file and migrates it
into an intermediate file format, called SimXML. The
information model behind SimXML provides the
possibility to add additional entities and information,
especially related to the building HVAC systems
semantics to SimXML. For example the SimXML
file can be extended with specific information for
Modelica simulation. The methodology part of this
paper describes technical details of this
transformation.

Checking the BIM

During the tool chain based framework, the
information model passes through several checks, to
ensure model quality. After generation of the IFC
file, an IFC model checker performs a schema check.
This ensures that the IFC file conforms to the IFC
schema. The next check validates the information
covered by the IFC file. This comprises different
validation rules, especially concerning the setup of
the building technology system.

For example, one validation rule checks that all pipes
are connected to a circuit. This check helps to reveal
inconsistencies in the model before the conversion to
SimXML. The energy consultant then can add the
missing information. A third check examines the
SimXML file for compliance with the SimModel
schema and generates error messages indicating
where modifications are needed. Besides detecting
errors, the tool also recognizes missing information
and other possible conflicts, and informs the user
automatically with respective warnings or errors.
Typical errors are unconnected pipes in a hydraulic
circuit.

Once all model issues are resolved, the energy
consultant passes the model to the code generation
part of the framework, to automatically generate
valid Modelica models.

SOFTWARE BASIS
Within the framework presented here, we use
different software languages and data formats. The
following section presents different software
languages, tools and data models for this application.

Industrial Foundation Classes (IFC)

IFC4 is the latest version of ISO standard 16739 for
describing computer models of buildings
(International Organization for Standardization
2013). It contains several improvements compared to
its predecessor IFC 2x3. Besides the model standard
itself, concepts for further specification of model
content quality and richness of details have been
provided. In context of building physics, the new
version of IFC extends the possibilities for describing
different space boundaries. Furthermore, the
extended HVAC semantics were also significantly
improved, together with the corresponding hierarchy
and topology. Many new component entities needed
for HVAC design, like IfcValve or IfcBurner have
been included.

Another main modification affects the Model View
Definition in IFC. In contrast to the superseded
‘singular’ Coordination View (CV) in IFC 2x3 the
concept in IFC 4 aims at splitting it up into a
Reference View (RV) and into a Design Transfer
View (DTV). While the RV’s main purpose is to
define the subset of the IFC4 schema, the DTV is
developed to edit specific elements.

SimModel

SimModel is a domain data model for whole building
energy simulation, related to EnergyPlus (O'Donnell
et al. 2011). This XML-based data model focuses on
the data needs for building energy simulation and is
called SimXML. It closely aligns with the IFC data
model (e.g., an IfcFlowMover corresponds to a
SimFlowMover) removing some of the redundancies
and simplifying relationships between objects.
Common elements in SimModel retain their mapped
IFC entity ID. The current version supports
translation from IDD (EnergyPlus Input Data
Dictionary), gbXML (Shafee and Dickinson 2011),
IFC and SDD (Standards Data Dictionary) (Maile,
Haves, and See 2015).

Python

Python is a high-level programming language with
object-oriented, functional and imperative character.
Python has advantages for use in back end
application of the tool chain. For instance, the code is
highly readable and the syntax is easy to learn,
enabling users without extensive programming
experience to work with the framework. Moreover,
Python is widely accepted for pre- and post-
processing by Modelica developers.

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 381 -

C++

C++ is a generic object-oriented programming
language, with advanced programming features,
including objects, inheritance, and polymorphism,
while also providing the facilities for low-level
memory manipulation. C++ is very popular,
particularly for the development of applications that
require speed and/or access to some low-level system
features. We use C++ as the development language
for libSimModel, enabling SimModel parsing and
data translation with a bias toward efficiency and
flexibility of use.

Modelica

Modelica is a free, open-source and non-proprietary
modelling language for complex technical systems.
Models are composed of as equation-based, acausal,
and object oriented blocks. The different blocks are
connected by interfaces and a combination of these
blocks form a full model. The well-formed models
are translated into objects that can be processed by a
simulation engine.

METHODOLOGY
Figure 2 illustrates the overall methodology. Various
software applications can export building design data
in the IFC format. Thereby the two key domains are
architecture and the HVAC system. The focus of the
presented framework is on the conversion of the
HVAC system, however we provide basic functions
to process geometric data. Once data from both
domains is in SimModel, the next step is to map
objects and properties to a specific Modelica library.
Via the API to libSimModel, the mapped objects and
properties are passed to a Python based tool, called
CoTeTo (Code-Templating-Tool). CoTeTo then
performs the last set of data manipulations to result in
a Modelica file that is ready for simulation.

IFC to SimModel

Figure 3 presents the detailed process of populating
information into SimModel. We provide two
alternatives to populate a SimXML file. The first
option is to use detailed information provided by an
architect in a CAD software. Many CAD applications
have the functionality to write IFC4 files. For
building energy performance simulation, we are not
only interested in architectural but also HVAC data.

The conversion of the checked and valid IFC model
to SimModel takes place in two steps. The first step
is to convert building geometry and HVAC data. For
building geometry data we are using existing tools
such as the Space Boundary Tool (SBT) and Simergy
(Rose and Bazjanac 2013). This is rather straight
forward as the semantic and structural overlapping
allows preservation of information in IFC and
SimModel.

The conversion of HVAC data has been developed
for this project. It first checks the HVAC
representation with a predefined set of validation
rules in the IFC data format and then converts it into
SimXML. The second step is to combine the
separately converted parts of the IFC model (building
physics and HVAC) into one well-formed and
schema valid SimModel XML file. The conversion
of HVAC data is indicated as KIT Tool in figure 3.

SimModel may also be populated with statistical
data. In cases where existing buildings are
considered, information is often sparse. To create
archetype buildings with minimal information input
(building type, year of construction, net-leased area,
number and height of storeys) we developed a tool
called TEASER.

App 1

App 3

App 2
libSimModel

CoTeTo

GUI

Modelica

Lib 1 Lib 2 ...SimModel
schema

 API
SimModel+ IFC

Bldg + Geom

HVAC

Figure 2: Methodology overview, from the information basis to Modelica

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 382 -

SimModel to Modelica

To accomplish the link between the rigid data
structure in SimModel with the flexible data
representation on the Modelica side, mapping rules
are needed (Wimmer et al. 2014; Wimmer et al.
2015). Such mapping rules enable reproducible
translation of SimModel content into a Modelica
representation.

The rules connect the objects and parameters with the
relevant input data in the specific Modelica library.
For this step, different mapping rules are developed.

In total, six mapping rules exist:

1. One to One
2. Many to One
3. One to Many
4. Gap
5. Transformation
6. Combination

The first rule describes a mapping of identical
objects/ parameters, such as the parameter describing
the efficiency of a boiler. A combination of several
objects to one object is provided for with the second
rule. For example, the ground reflection coefficient is
represented in SimModel for each month and in
Modelica as a single value. The third rule describes
the opposite case. The fourth rule deals with missing
objects/ parameters and extends the data in
SimModel by the required data. A specific example
is an expansion vessel. The expansion vessel is not
represented in SimModel. Rule number five maps
identical parameters, but with different
representations in SimModel and Modelica, such as a
unit conversion. The last rule represents a possible
combination of the rules. The user has to define the
algorithm between each object/parameter between
SimModel and Modelica. Defining these mapping
rules is a critical step, because the user needs to
understand the definition of all the relevant
objects/parameters on both sides. Thus, the user

requires high-level domain knowledge to understand
the structure of SimModel and the Modelica library.

Code Generation
The goal of the project is to enable the instantiation
of Modelica models from different model libraries
using a common data source. Each library has to be
handled separately because of different modelling
approaches. These libraries are currently under
development and are likely to change in the future as
well. A flexible data conversion framework is
required to allow for future changes. Thus, the tool
chain should allow flexible output components for
different libraries in multiple versions as well as
flexible input components. These should be easy to
maintain, even for non-programmers.

To connect and control different parts of the
framework we developed a Python based tool called
Code-Templating-Tool (CoTeTo). The workflow of
CoTeTo and the coupling to other tools within the
tool chain is shown in Figure 4. We designed
CoTeTo to be accessed by graphical, command line
and library level interfaces. The multiple access
points open the framework to a huge community.

The following section will give an overview of the
components and their functionality. We divide the
CoTeTo into input and output components.

The input component is referred to as the Data API.
It defines a prescribed way to fetch data sets from a
data source. Each output component depends on a
specific data API. Although we use the Python
language to write the CoTeTo, data API functions
and filters can interface to other languages.In the case
of our project the Building Information Model is
saved in SimXML format [see SimModel
description]. We access the data contained in the
SimXML-file by an API to a C++ skeleton class
representation of the SimModel Information Model
(libSimModel) (Cao et al. 2014). The skeleton class
also provides the previously described mapping

SimModel+

 IFC

SBT/Simergy

Teaser

KIT Tool
Bldg + Geom

HVAC

SimModel
schema

Bldg + Geom

HVAC
Checker Converter

Validation
rules

Types
Age

Zoning
LOD

HVAC

MVD

Figure 3: Transformation from IFC to SimModel within the framework

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 383 -

functionality. The API to libSimModel allows the
linking of different mapping rules, corresponding to
different Modelica libraries, to the SimXML file. The
API returns the mapped information in a tree
structure. The representation of components in tree
structures is intuitive and reflects the structure of
BIM. The data flow through the libSimModel API is
not limited to a single direction. It is also possible to
manipulate parameter values and send them back to
the corresponding C++ class, thus they can be saved
in the SimXML format.

Once all relevant data has been loaded into CoTeTo,
it is passed to the output component, called
Generator. We designed the Generator to contain all
items needed to generate the code for a specific
Modelica library. This includes the mapping rules
files, filter functions, additional information and text
templates. We can easily exchange Generators
between different installations, as they are zip-files
with a defined structure.

In our experience, some data needs manipulation.
One example of data manipulation relates to
geometric information. The Modelica libraries we
considered contain different types of building models
and thus need different pre-processing steps. Another
example relates to control elements for HVAC
components. The design of the control strategy is
dependent on the modelling approach of the HVAC
element. For this purpose, Generators can include
filter functions (Python code) that we call between
the data API and the templates. The filters are
custom-built to the used library. As mentioned above,
they may include simplification of geometric
relationships and calculation of model specific
parameters.

One major challenge in the automated generation of
Modelica models is the flexibility of Modelica.
Generally said, setting up useful models needs the
knowledge of an experienced user. We are following
the approach to encapsulate this knowledge in library
specific meta-models and templates.

One essential task here is the appropriate connection
of components. The API returns the connection
information corresponding to the SimModel
ontology, which differ from the one in a Modelica
library. In addition Modelica provides the possibility
to create own connection definitions, with arbitrary
information. The Meta-Model checks if the
connection is applicable, if not, it manipulates it or
raises an error message. Once all data from the
SimXML is in the correct format, CoTeTo is able to
export Modelica files. Modelica models are stored in
simple text files written in the Modelica language.
There are two general concepts for the generation of
text within a computer program. One approach is to
embed print()-statements for text strings and data in
the structure of a program. This is useful for almost
static, well-defined structures of the data set and of
the textual output.The other approach is template-
based, where placeholders for the content are
embedded in a text file (a template for the output).
Besides placeholders, templates also offer control
structures. Thus, template-based model generation
allows compliance with fixed Modelica language
syntax and addition of flexible model content in the
same file. With this approach, we are for example
able to embed pre-defined control strategies for
HVAC components in the output file. Another
advantage is the flexibility for the end user, who does
not necessarily needs to dive into the programs
internal structure, but can just enrich the template file

Component
and parameter

mapping
(libSimModel,

C++)

CoTeTo (Python)

Modelica

Lib 1 Lib 2

SimModel
schema

API
(in SI units)

Tree
Systems

Components
Properties

SimModel+
Bldg + Geom

HVAC

Mapping
rules xml

Automated
XML generator

Rule
development
for mapping

Process control

Tree view
Add missing

parameter values

2D diagrams 3D visualization

Python
templates

Meta-Model

Geo-processor
e.g., RC-values

C
on

ne
ct

io
ns

Python
templates

Meta-Model

Geo-processor
e.g., RC-values

C
on

ne
ct

io
ns

Figure 4: Detailed transformation from SimModel to Modelica models using the Code-Templating-
Tool (CoTeTo)

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 384 -

with placeholders and simple programming
constructs, whenever the used Modelica models
change. This workflow is much like the form letter
function in office software, which fills some variable
address fields in a text document from a database.

The template approach fits very well into the flexible
structure of CoTeTo , as it is independently usable
for different information sources. From the list of
available template engines, we chose the Mako
software (Bayer 2015).

WORKFLOW DEMONSTRATION
The following section provides an overview of a
typical workflow using the open framework from
BIM to Modelica. We applied the workflow to a
simple Use Case using AixLib as target library. The
general workflow is independent of the library used.
The Use Case consists of one thermal zone, which
suits the requirements of the validation example of
German Guideline VDI 6007 (German Association
of Engineers 2012). A simple HVAC example is
provided. The hot water loop comprises:

1. Boiler;
2. Pump;
3. Controlling valve;
4. Radiator;
5. Flow and return pipes;
6. Expansion tank.

The first step of the process is the creation of a BIM
representation in a suitable CAD-Software. This BIM
model generates an IFC4 file that contains geometric
and semantic information about building physics as
well as HVAC installations. Although IFC4 includes
HVAC installation, not all necessary parameters for
the simulation are added in this step.

We convert the IFC file into a SimXML file. Using
libSimModel and CoTeTo, the SimXML file is
loaded and the mapping rules are applied. The library
developer can adjust the mapping rules whenever
needed. Besides the mapping of the parameter names,
the following two examples show typical
applications of the mapping rules:

a) The Use Case contains no class to define an
expansion vessel; this class with the
corresponding parameters has to be added.

b) The definition of the efficiency curve of the
boiler is different in AixLib and SimModel,
this parameter needs to be transformed.

Once the mapped data is in the Python environment,
the user gets a feedback of warnings and errors to
check if all parameter values are available and
consistent.

The libSimModel API allows the addition of missing
values into the information model. Meta-Model and
Templates process the data automatically to generate
a valid Modelica file. The user loads the file into the
Modelica environment and checks the model for its
consistency.

LIMITATIONS
The authors are aware that the presented framework
has some limitations. The conversion from BIM to a
Modelica model is not fully automatic, nor a single-
click solution. Different users need to work closely
together to form a consistent tool chain. Some
components of this tool chain need to be changed
whenever the corresponding Modelica library
changes. As all participating libraries in the Annex
60 project are under development, changes are not
unusual and can take place regularly. The mapping
rules and the templates are two examples of
adaptable components. To adjust these parts the user
needs a good knowledge of both the information
model structure and the Modelica model. Further, the
framework only currently supports a subset of
Modelica models. The graphical representation and
layout in the Modelica simulation environment is out
of the scope of this project. The tool chain uses
closed source and commercial products. For example
Dymola is currently used for Modelica simulations.

CONCLUSION
This paper presents an overview of an open
framework of BIM-based Modelica BPS simulation.
The work considers different aspects of the
conversion from BIM to a valid simulation model.
Because of the flexible approach of the framework, it
is not limited to a specific Modelica library but
adaptable to different Modelica libraries for Building
Performance Simulation. To fulfil these requirements
we developed several tools, which we connect to an
integral tool chain. Starting from the well-established
IFC data model the tool chain is able to transform a
BIM to a Modelica model. To enhance the data
model with HVAC systems and simulation related
data we use an intermediate data model, called
SimModel and the corresponding format SimXML.
Through a generic API a Python tool can access the
mapped data and create the Modelica model. This
opens the framework to a large group of users. All
tools developed in this project are or will be made
open-source. We tested and validated the tool chain
using a pre-defined Use Case. In addition to the tools,
we specify a Model View Definition for BPS that can
be used to specify the exchange requirements for
dynamic building simulation in Modelica.

ACKNOWLEDGEMENT
This work emerged from the Annex 60 project, an
international project conducted under the umbrella of
the International Energy Agency (IEA) within the
Energy in Buildings and Communities (EBC)
Programme. Annex 60 will develop and demonstrate
new generation computational tools for building and
community energy systems based on Modelica,
Functional Mockup Interface and BIM standards.

Grateful acknowledgement is made for financial
support by BMWi (German Federal Ministry of

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 385 -

Economic Affairs and Energy), promotional
references 03ET1177A, 03ET1177D, 03ET1177E.

Other parts (no duplications) of the preliminary
research work in Ireland were supported by a Marie
Curie FP7 Integration Grant within the 7th European
Union Framework Programme project title SuPerB,
project number 631617.
REFERENCES
Bayer, Michael. 2015. “Mako Templates for

Python.” Accessed April 07, 2015.
http://www.makotemplates.org/.

Bazjanac, Vladimir, Tobias Maile, James O'Donnell,
and Cody M. Rose. 2011. “Data Environments and
Processing in Semi-Automated Simulation with
EnergyPlus.” In CIB W078 - W102. Vol. 2011.
Accessed April 27, 2015.

Cao, Jun, Tobias Maile, James O'Donnell, Reinhard
Wimmer, and Christoph van Treeck. 2014.
“Model Transformation From Simmodel to
Modelica for Building Energy Performance
Simulation.” In IBPSA Germany, BauSIM 2014,
242–49.

Cao, Jun, Reinhard Wimmer, Matthis Thorade,
Tobias Maile, James O'Donnell, Jörg Rädler,
Jérôme Frisch, and Christoph van Treeck. 2015.
“A Flexible Model Transformation to Link BIM
with Different Modelica Libraries for Building
Energy Performance Simulation.” 14th
Conference of International Building Performance
Simulation Association, Hyderabad, India.
(submitted).

Constantin, Ana, Rita Streblow, and Dirk Müller.
2014. “The Modelica HouseModels Library:
Presentation and Evaluation of a Room Model
with the ASHRAE Standard 140.” In 10th
International MODELICA Conference, Lund,
Sweden, 293–99. doi:10.3384/ecp14096293.

Eastman, Charles M. 2011. BIM handbook: A guide
to building information modeling for owners,
managers, designers, engineers and contractors.
2nd ed. Hoboken, NJ: Wiley.

German Association of Engineers. 2012.
“Calculation of transient thermal response of
rooms and buildings - Modelling of rooms: VDI
6007-1.” 91.120.10, 91.140.10 6007 - 1.

Huber, Jörg, Christoph Nytsch-Geusen, and Tim
Schünemann. 2012. “Automatische Generierung
einfacher und detaillierter Gebäudemodelle aus
3D-Gebäudebeschreibungen für die Verwendung
in Modelica-Systemmodellen.” In BauSIM 2012:
Fourth German-Austrian IBPSA Conference,
edited by IBPSA Germany, 125–32.

International Organization for Standardization. 2013.
Industry Foundation Classes (IFC) for data

sharing in the construction and facility
management industries, no. 16739:2013.

Jeong, WoonSeong, Jong B. Kim, Mark J. Clayton,
Jeff S. Haberl, and Wei Yan. 2015. “A framework
to integrate object-oriented physical modelling
with building information modelling for building
thermal simulation.” Journal of Building
Performance Simulation, 1–20.
doi:10.1080/19401493.2014.993709.

Maile, Tobias, Phil Haves, and Richard See. 2015.
“Integrating a Rule Based Code Compliance
Software Platform Into a User-Oriented
Simulation Interface.” 14th Conference of
International Building Performance Simulation
Association, Hyderabad, India. (submitted).

O'Donnell, James, Richard See, Cody Rose, Tobias
Maile, Vladimir Bazjanac, and Phil Haves. 2011.
“SimModel: A Domain Data Model for Whole
Building Energy Simulation.” In 12th Conference
of International Building Performance Simulation
Association, Sydney, Australia, 382–89.

Rose, Cody M., and Vladimir Bazjanac. 2013. “An
algorithm to generate space boundaries for
building energy simulation.” Engineering with
Computers 31 (2): 271–80.

Shafee, Ahamed, and John Dickinson. 2011.
“Environmental Scan of BIM Tools and
Standards.”.

Wetter, Michael, and Christoph van Treeck. 2015.
“IEA EBC Annex 60.” Accessed April 07, 2015.
http://www.iea-annex60.org/.

Wetter, Michael, Wangda Zuo, Thierry S. Nouidui,
and Xiufeng Pang. 2014. “Modelica Buildings
library.” Journal of Building Performance
Simulation 7 (4): 253–70.

Wimmer, Reinhard, Jun Cao, Peter Remmen, Tobias
Maile, James O'Donnell, Jérôme Frisch, Rita
Streblow, Dirk Müller, and Christoph van Treeck.
2015. “Implementation of Advanced BIM-Based
Mapping Rules For Automated Conversions to
Modelica.” 14th Conference of International
Building Performance Simulation Association,
Hyderabad, India. (submitted).

Wimmer, Reinhard, Tobias Maile, James O'Donnell,
Jun Cao, and Christoph van Treeck. 2014. “Data-
Requirements Specification to Support BIM-based
HVAC-Definitions in Modelica.” In
IBPSA Germany, BauSIM 2014, 99–107.

Yan, Wei, Mark J. Clayton, Jeff S. Haberl,
WoonSeong Jeong, Jong B. Kim, Sandeep Kota,
Alcocer, Jose Luis Bermudez, and Manish Dixit.
2013. “Interfacing BIM with Building Thermal
and Daylighting Modeling.” In 13th Conference of
International Building Performance Simulation
Association, Chambéry, France, 3521–28.

Proceedings of BS2015:
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 386 -

