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ABSTRACT

Residential and commercial buildings use nearly 75%
of the overall electrical energy in the U.S., and the
amount of renewable energy in the grid keeps increas-
ing. Buildings can be an important contributor to en-
sure a stable grid operation because they can shift their
loads to reduce peak demand and flatten the ramps of
load increase and decrease. Simulation models that
account for building loads and building dynamics, as
well as their impact on the electricity distribution grid,
are essential to assess different design and control op-
tions for buildings and electrical systems. This paper
presents the use of such simulation models of dynamic
building loads coupled to electrical models within a
tool chain that allows efficient numerical solution of
nonlinear optimization problems that aim at control-
ling the voltage stability and thermal comfort while
minimizing energy use or energy cost. The optimiza-
tion problems are formulated using the open-source
JModelica software that convert them to a form in
which they are solved using the nonlinear program-
ming solver IPOPT. In this formulation, JModelica
converts an infinite-dimensional optimization prob-
lem, defined on the solution of the differential equa-
tions of the simulation model, to a finite-dimensional
nonlinear programming problem using computer alge-
bra and collocation methods.

INTRODUCTION

Residential and commercial buildings use nearly 75%
of the overall electricity energy in the U.S. The in-
crease of PVs and intermittent loads such as electric
vehicles towards a new generation of net zero energy
buildings is posing a challenge to the stability of the
grid, impacting the reliability of traditional electricity
delivery (Ipakchi and Albuyeh,[2009). To avoid prob-
lems, efficient transactions between buildings and the
grid are needed (Palensky and Dietrich, |2011). Simu-
lation models that account for buildings and their im-
pact on the electricity distribution grid are essential to
support the design and operation of the distribution
grid (Van Roy et al., |2013). Such multi-disciplinary
and multi-domain models have to describe both the in-
teractions and the dynamics affecting these systems.
Moreover, once these interactions and dynamics are
defined, they should be leveraged to identify optimal
control strategies that help stabilizing the grid.

This paper shows how to solve such optimization prob-
lems that consider both dynamics and interactions be-
tween buildings and the electrical grid. As examples,
this paper investigates multiple optimization problems
that involve the optimal cooling as well as the charging
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and discharging of batteries in a commercial building
with and without on-site renewable energy sources.
The optimization problems are further extended to in-
vestigate the impact that buildings have on the voltage
quality in a small neighborhood and how batteries can
be controlled to improve it. The models used within
the optimization problem have been adapted from the
Electrical package (Bonvini et al., [2014)) of the Mod-
elica Buildings library (Wetter et al.,[2014).

The optimization approach we use differs from other
methods in the literature (Guan et al.l [2010; [Stadler
et al., |2009) that use mixed integer linear program-
ming (MILP) techniques. With MILP, it is possible
to approximate nonlinearities in the cost function with
piecewise linear approximations. The approach we
use is based on nonlinear programming (NLP) meth-
ods and is able to handle nonlinear dynamics as well as
nonlinear constraints on variables of the system. For
example, it can be used to minimize the total energy
use of a district energy system, or its total electricity
costs or CO2 emissions, while keeping the root mean
square (RMS) voltages within the required limits. An
other application could be optimal cooling load shift
while maintaining thermal comfort within the required
limits.

The paper also describes the toolchain based on the
open source tool JModelicq'| that allows to reuse sim-
ulation models to solve optimization problems. Such
a toolchain enables the users to design and operate
buildings and the distribution grid more efficiently.
While the examples in this paper use first-principle
physical models, the methodology works also with
grey box models and with models that are identified
from data.

MOTIVATION

Buildings, renewables energy generation plants and
distribution grids are engineered systems which are
steadily growing in complexity. Modeling and sim-
ulation tools are fundamental to support their design
and operation. Traditional simulation tools have lim-
ited capabilities when it comes to modeling integrated
systems. Different legacy tools are available to simu-
late the various domains (e.g., buildings and electrical
grid). However, most building simulation programs
such as EnergyPlus (Crawley et al., 2000) do not
model the electrical grid, while tools that focus on the
electrical distribution grid, such as OpenDSS (Dugan,
2012) and GridLab-D (Chassin et al., 2008) include
only simplified building and heating models, or take
load curves as input. Hence, if such tools were to

See www. jmodelica.org,
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be used together, one would require the use of co-
simulation (Makhmalbaf et al.,|2014} Chatzivasileiadis
et al.l 2015). An example of building simulation pro-
gram that allows to model electrical models is ESP-r
(Eng}, |1998)).

Solving design optimization or optimal control prob-
lems with many decision variables is difficult if eval-
vating the cost or constraint functions requires co-
simulation of legacy code. The reason is that solv-
ing large optimization problems is most efficient if
first or second order derivatives of the cost and con-
straint functions with respect to the design parame-
ters exist and are accessible. However, legacy code
is often written in such a way that state trajectories
are not differentiable with respect to the independent
parameters. Moreover, in the cases where gradients
exist, legacy tools often do not make them accessible,
thereby requiring the optimization algorithm to com-
pute numerical approximations of the gradient. This
is computationally costly and leads to more complex
algorithms (Polak, |1997)). Furthermore, optimization
algorithms have been shown to fail to converge if the
cost function is discontinuous, as identified in Energy-
Plus (Wetter and Wright, 2004).

The increased integration of building and district en-
ergy systems leads to complex dynamic systems that
require new approaches for design and operational op-
timization. The Modelica Buildings library (Wetter
et al., 2014) and the IDEAS library (Van Roy et al.,
2013) are examples of modeling libraries that have
been used to overcome the aforementioned limitations.
These libraries are based on Modelica, an equation-
based modeling language for dynamic, multi-physics
engineered systems (Mattsson et al., [1998). As Mod-
elica is a declarative language, models expressed in
this language can be symbolically analyzed and ma-
nipulated to bring them in a form that is more amend-
able for simulation and optimization. Therefore, Mod-
elica is well suited to express models for large scale
optimization (Akesson et al.| 2010). Figure (1| shows
the information flow for equation-based models when
used to solve optimization problems. The engineers
and designers simulate models to investigate the be-
havior of the system for different design alternatives.
To solve an optimal control problem, the models are
augmented by adding objective and constraint func-
tions. Next, the models are symbolically manipulated
using computer algebra to bring the optimization prob-
lem into a form that allows an efficient computation of
the optimal control function. The optimal control sig-
nal is then sent to the building system. Using measured
data, models can be adapted and current values of ob-
servable states can be estimated to align the states of
the models with the states of the building system.

Such an approach can be done using the open source
tool JModelica (Akesson et al.l 2009) which we used
in our experiments for this paper. JModelica uses
the equation-based structure of the model to con-
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Figure 1: Model-based optimization toolchain based
on JModelica.

vert an infinite-dimensional optimization problem into
a finite-dimensional nonlinear programming problem
that is then solves using a nonlinear solver (e.g.,
[POPT). The following sections provide an overview
of the systems that can be used with JModelica and the
methods that automatically generate an optimization
problem starting from a simulation model, constraints
and an objective function.

METHODOLOGY

The systems considered in this paper can be described
by a system of differential algebraic equations (DAE)
of index less or equal to one. The general form is

F(t, (1), 2(t), u(t), y(t), ©) = 0, ()

where t € [to, ty] is time for some initial and fi-
nal time ¢y and ¢y, z(¢t) € R™* is the state vector,
u(t) € R™ is the input vector, y(t) € R™v is the vec-
tor of algebraic variables, and © € RP is the vector of
parameters. The initial conditions for (I can be im-
plicitly specified as

Fo(i'(to),l'(to),u(to),y(to),@) =0. (2)

A comprehensive description of the generalized opti-
mization problems that can be solved with JModelica
is

Zglenér’%léeap f(t,2(t),0) (3a)
subject to F(t,z(t),0) =0, (3b)
Fy(2(t0), ©) =0, (30)
zr < 2(t) < 2y, (3d)
pr <0 <py, (3e)
h(t, z(t),0) =0, (30)
g(t, 2(t),0) <0, 3g)
H(t,Z,,0) =0, (3h)
G(t,Z4,0) <0, (31)
Vit € [to, tg],
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where z(-) = [z(-),y(),u()]. f() = R x
Rty tnu 5 RP — R is the cost function, the equal-
ities (3B) and describe the dynamics of the system
and its initial conditions, (3d) and (3€) define the up-
per and lower bounds for the time dependent variables
and the parameters, (3f) and (3g) are equality and in-
equality path constraints, (3h) and (3i) are the equal-
ity and inequality point constraints, where Z and Z,
are the points where these constraints are imposed.
To establish second order optimality conditions and to
find a first order optimal solution, for (3)) the functions
f(,-), F(-,+,-) and Fy(-, -) have to be twice contin-
uously differentiable.

The general optimization problem (3)) covers a large
class of problems, that include optimal set point track-
ing, and parameter calibration. The problem is infi-
nite dimensional because the optimal solution z(+) is a
functional in the set of admissible trajectories Z. The
techniques and methods described by Biegler (2010)
allows to convert an infinite dimensional optimization
problem of the form (3) to a finite dimensional nonlin-
ear programming problem of the form

minimize  f(w),

weR™w
subjectto  wr < w < wy, 4)
g(w) =0,
h(w) <0,

where w € R"™ is a finite dimensional variable.
JModelica uses the direct collocation method to con-
vert the infinite dimensional problem (3) into its equiv-
alent finite dimensional form (@). The method uses
polynomials defined over a finite number of support
points, the so-called collocation points, to approxi-
mate the trajectories of the dynamic system. Be-
fore assigning the collocation points, the time hori-
zon [tg, tf| is divided into n. elements. Next, within
each element, the time-dependent variable z(¢) is ap-
proximated using a vector valued polynomial z;(¢) =
(&4 (t), 2;(t), u;(t), y:(t)). The collocation polynomi-
als are formed by choosing a number of collocation
points n., within each of the n. elements. The number
of collocation points n, is assumed to be the same for
each element. The collocation polynomials are created
using Lagrange interpolating polynomials that use the
collocation points as interpolation points. The collo-
cation points are selected using the Radau collocation
method, which place a collocation point at the end of
each element and then select the others to maximize
accuracy. In addition to the collocation points, the start
point of every element is added to impose constraints
on the continuity of the state trajectories between dif-
ferent elements. The collocation polynomials that ap-
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proximate z(t) in the element i are

2i(r) =Y wixli(7), (5a)
k=0

wi(T) =Y ik lk(7), (5b)
k=1

vi(1) = Zyzk Uk (7), (50)
k=1

where 7 € [0, 1] is the normalized time in each el-
ement i € {1,...,n.}, lx(7) is the Lagrange basis
polynomial and [ (7) is the Lagrange basis polyno-
mial that includes the first point to ensure continuity
of the state trajectories. Since the time is normal-
ized in all the elements, the basis polynomials are the
same for every element. The polynomial approxima-
tion of the derivative 4;(7) is the derivative of (5a).
The infinite dimensional optimization problem (3) is
converted into a finite dimensional problem that can
be solved using a NLP solver. The conversion is done
by replacing the continuous variables z(t) and ¢ with
their discretized versions, z;(t) and ¢;. For a more de-
tailed overview see Magnusson and Akesson|(2012).

EXAMPLE

We present a series of examples that investigate the
optimal cooling, charge and discharge of batteries in a
neighborhood with commercial buildings and on-site
renewable energy sources. The series starts with the
optimization of a single building. Next, we increase
complexity by adding more buildings, PVs and batter-
ies. The series concludes with an optimization prob-
lem where batteries in different buildings are coordi-
nated to improve the voltage quality of the neighbor-
hood while satisfying thermal comfort constraints.

BUILDING MODEL

150)

Load RC [kW]

100}

50

50 200

100 15
Load E+ [kW]

Figure 2: Comparison of cooling load computed by
a reduced order model and the original EnergyPlus
model. The green, yellow and red colored area repre-
sent a relative error of 5%, 10% and 15%.
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The building model used in the example is a 54,000
ft? two story steel-frame office and laboratory build-
ing, located in Berkeley, CA. An EnergyPlus model
of the building was available, which we converted
to an equivalent resistor-capacitor (RC) model us-
ing the Building Resistance-Capacitance Modeling
(BRCM) toolbox (Sturzenegger et al., 2014). The
linear RC model constitutes a simplification of the
whole-building EnergyPlus model. The number of
outputs of the building model has been limited to the
average return air temperatures Tr(¢) of the thermal
zones. The model is

z(t) = Ax(t) + Byo(t), (62)
y(t) = Cx(t), (6b)
C= ‘;:Zt sy T %7 07 Ty 0 )

where x(t) € R is the state vector containing all
the temperatures of the zones, internal masses and
wall layers, v(t) € R™ are the predicted disturbances
(such as external air temperature, solar radiation and
internal heat gains), y(t) € R™, with n, = 1, is the
return air temperature, C' € R x R"# is the output ma-
trix, 1, is the number of thermal zones (the first n, ele-
ments of the state vector x(t)), V; fori € {1, ..., n,}
is the volume of the i-th thermal zone, and V;,; =
>-i2, Vi is the sum of all the volumes. The vector of
known disturbances v(t) and outputs y(t) are defined
as

v(t) =[Qing (), Tam (1), Tgna(t), Se(t),
Sw (t)v Sn (t)a Ss (t)]Ta
y(t) =[Tr(®)],

where (Q;54(t) is the internal heat gain, T, (%) is the
outside air temperature, Tg,,4(t) is the ground temper-
ature and S;(t), with i € {n, s, w, e}, are the global di-
rect plus the diffuse solar radiation on the north, south,
west and east directions. For this study, we further re-
duce the size of the initial RC model using a method
that eliminates the state variables characterized by the
smallest Henkel singular values (Glover, |1984). With
such a method we reduced the number of states of the
initial RC model from 106 to 8 state variables. Fig-
ure [2] shows a comparison between the cooling load
predicted by the reduced order model with respect to
the original EnergyPlus model over the summer pe-
riod. The higher relative errors that occur in the lower
left corner are due to the presence of nonlinear effects
such as radiation to the sky during night time.

The HVAC model provides a simple description of the
overall performance of the cooling system and is de-
scribed by the following equations

COP(t) = f(Tums(t)), (8a)
Qihy (t) = Po(t) + ]Dl(t) =+ Pp(t) + Peool (t)7 (8b)
Palt) = RO+ PO+ G 89

where we used for the coefficient of performance
COP(t) a linear function of the outside air temper-
ature, P,(t), P,(t) and P,(t) are the internal heat
gains due to occupants, lights and plug loads, P.;(t) is
the electrical power consumption of the building and
HVAC system and P, (t) is the cooling power that
is needed to maintain the thermal comfort inside the
building. P...;(t) is also one of the decision variables
of the optimization problem.

ELECTRIC MODELS

In the electrical domain, the building is represented by
an inductive load with PVs and a battery connected to
it. The electric models use the quasi-stationary phaso-
rial representation, i.e. voltages and currents sinusoids
have no transients and thus can be represented by vec-
tors in the complex plane. The apparent power of the
inductive load representing the building is

Sbui(t) = Per(t)(1 + jtan @), €))

where ¢ is the phase shift between the voltage and cur-
rent phasors. If ¢ > 0, the load is inductive. The
model of the battery is

d
Ehpatt %SOC(t) = Pyaue(t), (10)

where FEjyq4¢ is the storage capacity of the battery,
SOC(t) is the state of charge and Py, (t) is the power
stored into or drawn from the battery. Pyqs:(t) is the
second decision variable of the optimization problem.
The battery is connected to a DC/AC converter and we
assume that this conversion does not introduce reactive
power. The PV model is

Ppy(t) =(Se(t)Ae + Su(t)Aw+
Sn t)An +Ss(t)AS)nPV7 (]la)

where P, (t) is the power produced by the PVs, A,
Ay, Ay, and Ay are the areas of the PVs panels ori-
ented towards east, west, south and north, and npy is
a parameter that accounts for the efficiency of the PV
modules and the efficiency of the inverter. The reactive
power generated by the DC/AC converter connected to
the PV is assumed to be equal to zero.

The quasi-stationary assumption allows to model the
electric loads, PVs, and lines with algebraic equations
that are coupled to the differential equations of the
buildings and electric storages. Such representation
helps the collocation method because it does not have
to approximate on the same time grid both fast electri-
cal transients and slow thermal dynamics.

CONSTRAINTS AND COST FUNCTIONS

All the optimization problems either minimize the en-
ergy used by the building E(+,-) : R x R — R or the
energy cost M (-,-) : R x R — R. The cost functions
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are defined over a period of five days as

E(to, tf) =
t
' max(0, Per(t) + Ppawe(t) + Ppy(t))dt, (12a)

to

M(to,tf) =

/tf P(t) (Pei(t) + Poart(t) + Ppy(t))dt, (12b)

to

where p(t) is the time-varying price signal, ¢y and s
are the initial and final times of the optimization pe-
riod. The price is assumed to be the same for ei-
ther buying or selling energy and it varies between
0.11$/kWh and 0.24$/kWh. Note that the max(-, -)
function, implemented using a smooth approximation,
incentivizes each building to use its electric or thermal
energy storage. The reason is that feeding power to
the grid does not decrease the cost function E(to, ty),
therefore it disincentives the building from feeding
power back to the grid reducing possible overvolt-
ages. Later in this paper, we will impose inequality
constraints on the maximum voltage. The constraints
included in the optimization problem define both the
thermal comfort requirements as well the limits of op-
eration of the electric storage and the HVAC system.
The constraints are

Pyt < Poan(t) < Pyt (13a)
PIE < Peoor(t) <0 (13b)
TR™ < Tgr(t) < T”“”ﬂ (13c)
SOC™m < SOC(t) < SOC™*, (13d)

where P;70F and P]77" are the maximum discharging

and charging power of the battery, P’"%" is the maxi-
mum cooling capacity of the HVAC system, 72" and
TR** are the comfort constraints on the return air tem-
peratures and SOC™™ and SOC™4? are the allowed
minimum and maximum charge of the battery.

We initialized all the optimization problems using a
solution based on a relay controller that keeps the re-
turn air temperature 7'z (t) within the limits specified
by (13). Such sub-optimal and feasible initial solution
helps the nonlinear solver to find the optimal trajec-
tory.

SCENARIO 1

In this scenario, the building has neither PVs nor a bat-
tery. The cooling power profiles are computed in or-
der to minimize either the energy use or the energy
cost. Figure [3] shows the results of the optimization.
When the controller minimizes energy use E(to,ty),
the room temperature is always at the higher limit of
the comfort range (the red line). When minimizing en-
ergy cost M (to,ts), because of the higher price dur-
ing the day, the controller shifts the cooling load to the
night and causes the building to pre-cool (black line).

310

305

[
S
S

N
<
ot

Temperature [K]

290

Time [days]

Figure 3: Scenario 1 — The figure shows the temper-
ature in the building when controlled to minimize en-
ergy (red line) and to minimize cost (black line). The
outside air temperature and the comfort temperature
range are shown in green and dashed blue lines. The
darker the background color, the higher the energy
price.

SCENARIO 2

In this scenario the building has PVs but no battery. As
in scenario 1, the only degree of freedom for the con-
troller is to decide the optimal allocation of the cool-
ing power. Figure [4] shows the results for minimizing
energy or cost. When minimizing energy use, the con-
troller decides to use the power provided by the PVs
to cool the building during the day (red line) as feed-
ing electricity to the grid does not reduce the objec-
tive function E(f,ts). However, when minimizing

the energy cost M (to,ts), the controller, as in sce-
nario 1, shifts the cooling to the night and pre-cools
the building (black line).

Time [days]

Figure 4: Scenario 2 — The figure shows the temper-
ature in the building when controlled to minimize en-
ergy (red line) and to minimize cost (black line). The
outside air temperature and the comfort temperature
range are shown in green and dashed blue lines. The
darker the background colov, the higher the energy
price.

SCENARIO 3

In the third scenario we add a battery to the system,
thus the optimization problem has an extra degree of
freedom with respect to scenario 2. In this case, the
controller can decide the optimal cooling power deliv-
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Figure 5: Scenario 3 — The figure shows the temper-
ature in the building when controlled while minimiz-
ing the energy (red line) and while minimizing the cost
(black line). The outside air temperature and the com-
fort temperature range (green and dashed blue lines).
The darker the background color; the higher the energy
price.

State of charge [1]
) ) )
S > ®
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Figure 6: Scenario 3 — The figure shows the temper-
ature in the building when controlled to minimize en-
ergy (red line) and to minimize cost (black line). The
outside air temperature and the comfort temperature
range are shown in green and dashed blue lines. The
darker the background colov, the higher the energy
price.

ery as well the optimal charge and discharge schedule
of the battery. Figures[5]and [f]show the results of this
scenario. Compared to scenario 2, when minimizing
energy, the temperature of the building decreases less
since part of the power produced by the PVs is stored
in the batteries and then used during nighttime when
the COP is higher and the PVs do not generate power.
When optimizing the cost of energy, the variability
of the energy price and the thermal constraints play
a dominant role. The controller pre-cools the build-
ing as much as possible when the energy is cheap in
order to minimize the electricity cost during the high-
price period. Figure [f] shows how the extra degree of
freedom provided by the battery is utilized. The con-
troller that minimizes the energy use E(to,¢s) charges
the battery during the day when the PV are producing
power (red line). The controller that minimizing the
cost of energy M (to,ts) charges the battery at night
using cheap energy and discharges the battery during
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the day (black line). It turns out that the controller that
minimizes energy does not fully charge and discharge
the battery. In contrast, the controller that minimizes
the cost of energy stores as much energy as possible
when it is cheap and then uses it during the peak time.

SCENARIO 4

Building A

Building B

R =18Q

Building A: Building B: Building C:
Pnom =250 kW  Ppom=250kW  Pnom =250 kW
coshp=0.9 cos$p=0.9 cosp =0.9

Ebatt = 600 kWh  Epatt = 600 kWh Ebatt = 600 kWh
Psolar = 400kW  Pgolar = 300kW  Pgplar = 350kW
90% South 70% South 70% South

10% East 30% East 15% East

Figure 7: Schematic representation of the neighbor-
hood.

In this scenario, we consider three buildings. The
models used in the former scenari have been
parametrized with different values to represent three
commercial buildings as shown in Figure[7] The pa-
rameters that have been modified are the distribution
of the PVs along the different directions, and the nom-
inal power of the PVs of each building. This change
causes diversity on the magnitude and shape of the
generated power among the buildings. In this sce-
nario, we also consider the grid voltage, and one op-
timization scenario includes inequality constraints on
the RMS voltage at the building to grid connections.
For every building, the constraints defined in (I3) are
still applied, and additional constraints are

Vame(t) < vmes (14a)
Vé"mS (t) < Vmax7 (14b)
VEme(t) < vmar, (14¢)

where V*(t), V5™*(t) and VZ™5(t) are the RMS
voltages of the buildings, V"% = 1.02 V), is the max-
imum allowed voltage, and V,, is the nominal voltage
of the network. It is important to note that the voltage
constraints (T4) are nonlinear since the RMS voltage
is defined as

yrms (t) =/ VRe (t)2 + V]2m(t)a (15)

where Vg (t) and V7,,,(¢) are the real and imaginary
components of the voltage phasors.

Figure [§] shows the voltage variations in the differ-
ent nodes of the neighborhood under the optimal con-
trol function of scenario 3. The blue lines show the
voltages when the cost function of the optimization
is the energy used E(to,ts). In this case, the volt-
ages do not reach the red shaded area that corresponds
to a RMS voltage that is 2% higher than the nominal
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value of V,, = 4.8 kW. Overvoltages happen when the
buildings are controlled to minimize the cost of energy
M (to,ts) (red lines). This happens because the build-
ings charge their batteries during the night and sell the
power generated by the PVs during the day. The green
lines in Figure[§show the results of the new optimiza-
tion problem that also takes into account the voltage
constraints (T4).

— '
| VA.H.('

Time [days]

Figure 8: RMS voltages of the buildings A, B and C.
The blue lines are the voltages when the buildings are
individually controlled to minimize the energy use, the
red lines when they are individually controlled to min-
imize their energy cost, and the green lines when all
the buildings are controlled to minimize energy cost
while satisfying thermal and voltage constraints. The
red shaded area indicates the voltage violation region.

RESULTS AND DISCUSSION

Table E] compares the results of scenario 1, 2 and 3.
As expected, when PVs and batteries are added, the
value of the cost function is reduced. An interesting
fact happens when transitioning from PVs only to PVs
and battery, i.e., from scenario 2 to 3. For example
when minimizing with respect to the cost of energy
M ((to,tf), the energy use E(to,ty) increases despite
the lower cost. The same is true when optimizing with
respect to the energy use E(to,ty): the energy use is
less but its cost is higher.

Table 1: Comparison of total energy use and cost of
energy in the different cases. Opt. M are results when
minimizing the cost of energy M (to,ts) and Opt. E
are the results when minimizing energy cost from the
grid E(to,tr).

Energy [kWh] Cost [$]
Scenario | Opt. E | Opt. M | Opt. E. | Opt. M.
1 25.7 26.0 3978 3948
2 11.8 13.0 810 684
3 9.7 15.3 913 420

When taking into account the whole neighborhood,
the optimization strategy that minimizes the energy
used from the grid keeps voltage levels low since each
building tries to use as much power produced by the
PVs as possible. Hence, this strategy attenuates the
chances of over voltages in the network. Optimiz-
ing the cost of energy introduces high grid voltages

as the buildings try to reduce their energy use during
peak time and selling as much solar power as pos-
sible. A coordinated action, obtained by solving an
optimization problem with both, thermal and voltage
constraints, solve this issue. However, the cost of this
voltage-aware control action impacts the total cost of
operation. The economic impact affects in particular
the buildings that are more distant from the source, in-
creasing the cost of energy up to 17% for building C
while only 12% for building B.

This optimization scenario includes six independent
functions to be varied, which are the cooling power of
the buildings and the charge or discharge power of the
batteries. The total number of variables of the finite-
dimensional optimization problem solved by IPOPT
depends on the number of elements 7, and collocation
points n.. Different number of elements have been
used to evaluate the performances of the optimization
method. The number of collocation points in each el-
ement has been kept constant n, = 3. Table 2] shows
the results of the analysis. The optimization problems
have been solved on a Linux virtual machine with 2GB
of memory and 4 cores, using Virtual Box as virtual
machine manager. The host machine is a MacBook
Pro with a 3 GHz Intel Core i7 processor and 16 GB
of memory. Despite the number of variables of the
finite-dimensional optimization problem, the number
of iterations and the time needed to converge to an op-
timal solution indicate that the use of gradient based
methods are an efficient way to handle such optimiza-
tion problems.

Table 2: Performances of the optimization method in
scenario 4 using different number of elements n..

ne | Variables | Iterations | Time [s]
24 14094 136 23.88
48 28038 253 56.72
96 55926 443 1164.74

CONCLUSIONS

This paper demonstrated how simulation models can
be reused to generate optimization problems using a
toolchain that leverages the Modelica modeling lan-
guage and nonlinear programming algorithms. Mod-
els adapted from the Modelica Buildings library have
been used in conjunction with JModelica that solved
the optimization problems. The example demonstrated
how different optimization problems can be created by
incrementally increasing the complexity of the model.
The example also demonstrated how nonlinear opti-
mization problems that involve both thermal and elec-
trical domains in presence of nonlinear cost and con-
straint functions can be solved. The performances of
the optimization method have been tested by dividing
the optimization interval with different number of el-
ements. The results show that gradient-based meth-
ods are efficient in solving optimal control problems
for building and grid integration with large number of
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