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ABSTRACT 

The IEA EBC Annex 60 is developing and 

demonstrating new generation computational tools for 

building and community energy systems based on the 
non-proprietary Modelica modelling language and 

Functional Mock-up Interface standards. The 

anticipated outcomes are open-source, freely 

available, documented, validated and verified 

computational tools that allow buildings, building 

systems and community energy grids to be designed 

and operated as integrated, robust, performance based 

systems with low energy use and low peak power 

demand. Activity 2.3 focuses on the use of models 

during building operations to augment monitoring, 

implement control algorithms and fault detection, and 

diagnostics methods. This paper presents an overview 
of the work carried out within Activity 2.3 including a 

description of three case studies. 

INTRODUCTION 

Modelica is an equation-based, object oriented 

modelling language for complex multi-physics 

systems. The use of Modelica for the built 

environment is promising as buildings involve 

multiple physical phenomena (e.g., heat transfer, fluid 

dynamics, electricity) and are complex in terms of 

their dynamics (e.g., coupling of continuous time 

physics with discrete time and discrete event control) 

and in terms of their sizes, ranging from equipment to 
buildings and communities with district heating, 

cooling and electrical distribution grids. 

An advantage of Modelica is the modularity of the 

language that allows modification of the code 

according to the specific needs of the application. The 

object-orientation enables extension and reuse of 

components and the use of standardized interfaces 

enables collaboration across physical domains and 

disparate developer groups. 

Modelica is a declarative modelling language. To 

simulate models expressed in Modelica, they are 

translated, typically to C code, and linked to numerical 
solvers. This translation process is done by a Modelica 

tool that provides symbolic processors, numerical 

solvers, code generators and utilities for run-time 

support. Using declarative models that are afterwards 

translated to executable code allows generating 

different code for conventional simulation, for 
simulation under real-time constraints, and for 

optimization. Therefore, there are many ways to use a 

Modelica model during buildings operation such as for 

Model Predictive Control (MPC), Fault Detection and 

Diagnosis (FDD) or Hardware in-the-Loop (HiL). 

Model predictive control 

The energy control of buildings has been widely 

studied and reported in the literature in the last fifteen 

years. A large body of literature has been published on 

applications of MPC to HVAC systems (Afram & 

Janabi-Sharifi, 2014). Compared with traditional 

control approaches, MPC eliminates many of standard 

control drawbacks in large-scale applications, 

including hard parameter tuning, weak prediction 

capability, difficult implementation of supervisory 

control and weak adaptability to varying operating 

conditions. From the operational point of view, four 

aspects are relevant in the engineering process of MPC 
energy efficiency applications (Ma, 2012):  

 The index used in the cost function such as the 

predicted mean vote (Fanger, 1973; Braun et al., 

2012; Hu & Karava, 2014). Also, other simpler yet 

descriptive comfort indices might be found used as 

a set of linear constraints on the zone temperatures, 

CO2 concentrations, and relative humidity 

(ASHRAE, 2004; Freire et al., 2008; Kelman et al., 

2011; Oldewurtel et al., 2010; Ma et al., 2011) .  

 The modelling technology: including detailed 

modelling  (Henze et al., 2005; Coffey et al., 2010); 
simplified modelling and grey-box models (Braun, 

1990; Kelman et al., 2011; Oldewurtel et al., 2010; 

O’Neill et al., 2010; Andersen et al., 2000; Bacher & 

Madsen, 2011; Reynders et al., 2014), and black box 

models   (Chen et al., 2006; Cigler et al., 2012; Liu 

& Henze, 2006a, 2006b).  

 The implementation of the control actions: two 

major implementation methods can be found, either 

computing the control signals in real-time (Kelman 

et al., 2011; Oldewurtel et al., 2010), or using look-

up tables for accessing solutions pre-computed off-
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line (Alessio & Bemporad, 2009; Braun et al., 2012; 

Domahidi et al., 2011). 

 The implementation technology and, consequently, 

the development and deployment framework of the 

MPC solution. TRNSYS, MATLAB and Modelica 

are at present time the most used tools for 

developing scalable and site-specific solutions for 

optimised control. The Modelica language has some 

key features that provides substantial advantages 

over the MATLAB and TRNSYS environments 

facing the complexity of large MPC application 
(Wetter & Haugstetter, 2006; Burhenne et al., 2013).  

A specific MPC library for linear problems provide 

integrated control system design in Modelica 

(Hölemann & Abel, 2009). Modelica models can be 

directly used in the main MPC loop (Imsland et al., 

2008) unless the size of the model makes it 

computationally impractical. In those cases, they can 

be used as the data source for model reduction 

processes (Burhenne et al., 2013). 

The design of building models for MPC is not a trivial 

task. On the one hand, MPC models have to provide 
accurate predictions of future states, and, on the other 

hand, they must be computationally efficient, so that 

they can be deployed on-site using cost-effective 

computational resources. At the same time, MPC 

models must provide results in a time frame 

compatible with the operational time constraints. 

Furthermore, MPC models must be embedded in 

systems that, for cost reasons, will not include all the 

sensing/actuating capabilities desired. Despite this 

reduced input set, the model accuracy of the MPC 

must be granted within precise and effective error 

boundaries. The fulfilment of such competing 
requirements compels the definition of a model-

engineering framework, which establishes the 

methodological steps required to design accurate and 

robust MPC models. 

Fault detection and diagnosis 

FDD in building operation can be seen as part of the 

building optimization process. A large amount of 

energy is wasted because many HVAC&R systems are 

not operated in the way they were designed for 

(Katipamula & Brambley, 2005a, 2005b; Bruton et al., 

2014). Malfunctioning or faults are often not detected 

or only detected when they manifest themselves at the 

system level and e.g. occupants complain (Bruton et 

al., 2014). In the Annex 60 (Wetter et al., 2013), the 

focus lies specifically in using Modelica models for 

FDD benefitting from the extensive existing model 

libraries for buildings and HVAC&R systems and the 
various interfaces and coupling mechanisms provided 

for those models. 

Modelica models can be used for FDD in two different 

aspects: directly, by using simulation results as a 

reference for the monitored data and indirectly, by 

using simulation data as training data for black box 

models. In the latter case, the results of the black box 

model are then used as a reference for the monitored 

data. The direct use of Modelica models for FDD, 

based on fault models, has been reported in (Bunus et 

al., 2009; Lunde et al., 2006; Cui et al., 2011). 

However, in the building sector, Modelica models 

have been rarely used for FDD, partly due to the great 

effort that is typically involved in the establishment of 

a complex building and HVAC&R model and the long 

simulation times going along with detailed models. In 

the past few years a big step has been done with 

respect to the development of standardized building 
and HVAC&R libraries with the publication of the 

Modelica Buildings Library  (Wetter et al., 2014), 

which facilitates the setup of simulation models for 

building performance analysis. 

The indirect use of simulation models can be 

beneficial if, e.g., FDD is part of an online routine, but 

the respective simulation model is too slow. Typically, 

black box models are faster, but have high time and 

effort requirements in the (offline) training period. A 

drawback of all black box models is that they need 

large amounts of fault-free, and sometimes faulty, data 
for training. Therefore, monitoring data has to be 

classified by experts. This difficulty can partly be 

overcome by the use of simulation data from Modelica 

models. 

A systematic and extensive generation of simulation 

data corresponding to standard HVAC&R systems 

and to common faults appearing in such systems can 

ease the configuration of black box models, which can 

then be applied for FDD in a wide range of different 

HVAC&R system. Common black box methods, 

which have been applied in the building sector are, for 

example, Bayesian classification, clustering, 
qualitative models and artificial neural networks 

(House et al., 1999; Müller et al., 2013; Du et al., 

2014; Mann, 2011; Sterling et al., 2014). A 

comprehensive overview of several methods and their 

respective characteristics are given in (Bruton et al., 

2014). In (House & Kelly, 1999), various methods are 

compared among each other and to rule-based 

methods and evaluated with respect to performance in 

FDD. However, there is still a need for systematic 

studies, which compare and evaluate different 

methods in order to obtain a clear picture of the scope 
of application and the specific difficulties of each 

method. 

Finally, the possibility to import and export Modelica 

models as Functional Mock-up Units (FMUs) enables 

the integration of models using a standardized, tool-

independent API into existing FDD routines or the 

development of integral solutions that couple tools for 

data analysis, simulation, FDD and optimization in 

one single environment. An integral solution can be 

realized, for example, using the Building Controls 

Virtual Test Bed (BCVTB) (Wetter, 2011) or 

JModelica with the python module PyFMI (Åkesson 
et al., 2010). 
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Hardware in-the-loop 

HiL is a process that is widely used for product 

development and testing in industries such as 

automotive and aerospace. Example applications can 

be found in (Winkler & Gühmann, 2006; Ebner et al., 
2007) where Modelica models were used for the 

development of hybrid electric vehicle, and the 

implementation of a HiL test platform for the 

simulations of drive cycles to test energy storage 

systems in electrified vehicles such as batteries or fuel 

cells respectively. In (Zhao et al., 2009), a HiL 

simulation system of civil aircraft thrust reverser with 

Modelica-based simulation platform was presented. 

Although HiL in combination with Modelica is a 

common process in different industries, it has not yet 

found wide applicability in the buildings community. 

In (Kan et al., 2013), HiL simulation assisted design 
and validation approaches of Home Energy System 

with help of Modelica libraries are introduced. In 

(Nouidui et al., 2012), HiL was used for the 

development of a model-based controller of a blind. In 

this process, Modelica models of the Buildings library 

were used to construct a model of a physical test cell, 

which has a controllable blind. This model was used 

in real-time together with Radiance, and the Building 

Controls Virtual Test Bed to determine the blind 

position that minimized the energy consumption of the 

test cell. This blind position was then converted into 
an actuation signal that was used to control the blind 

of the physical test cell 

CASE STUDIES 

MPC development for energy control of 

underground public spaces 

This case study concerns the SEAM4US EU FP7 

project (SEAM4US, 2014) pilot that has been 

deployed, since August 2014, in the Passeig de Gracia 

(PdG) Line 3 metro Station in Barcelona, Spain. The 

pilot is currently operating, and it is aimed at 

demonstrating the effectiveness of MPC applied to the 

ventilation, lighting and passenger movement systems 

in underground subway stations. The development of 
the MPC component required a considerable 

modelling effort since the energy dynamics of the 

underground stations was narrowly reported in 

literature. The modelling of the environment dynamics 

included the passenger flow, the ventilation and the 

lighting systems, the outdoor and the indoor thermal, 

fluid and pollutants dynamics. In order to gain the 

necessary insights about the complex energy 

behaviours of the underground station, a model-

engineering framework, combining different 

modelling and survey techniques at different scale of 
details, was established. A peculiar requirement of this 

process was the co-development of the analytic 

models and of the related sensor network, in which the 

modelling process supports the specifications of the 

sensor network (i.e. type, location, range and 

sensitivity of each sensor), and, the data gathered by 

means of the deployed sensor network support the 

model calibration phase. Three development stages 

were employed. 

 A preliminary phase, based on finite element 

modelling of the urban canyon and of the indoor 

environment, was aimed at acquiring a qualitative 

understanding of the outdoor and indoor fluid and 

thermal dynamics. This phase drove the initial 

surveys, the design and the deployment of a 

preliminary sensor network. 

 A development phase, based on Modelica, aimed at 
developing a whole building lumped parameter 

model of the station including the forced ventilation, 

and the lighting systems, the heat exchange and mass 

flow dynamics. The model is based on the Modelica 

Buildings library and has been calibrated according 

to ASHRAE guidelines (ASHRAE, 2002), using the 

data gathered by the deployed sensor network. 

 An optimisation phase, in which the Modelica model 

was reduced into an embeddable statistical model 

that was deployed into the on-site MPC system. The 

sensor network was optimised, so that a one-to-one 
matching with the reduced model input and output 

variables was established. 

The Modelica model was the enabling factor of the 

overall model engineering. Modelica offered all the 

key features that allowed the successful management 

of such a complex case. The Modelica equation based 

language provides natively a-causal modelling and, 

consequently, object orientation. Therefore, libraries 

are arranged in components – subcomponents 

hierarchies that match one to one the real world 

objects. This allows the effective implementation and 

the calibration of extremely large models. The final 
station model amounts at about 77,000 unknowns. 

Furthermore, components are open and easily 

customisable. Custom models of the station fans, 

escalators, lighting appliances, as well as of the built 

environment (i.e. horizontal openings) were 

developed on top of existing Modelica libraries, as a 

standard model development process. In addition, 

Modelica offers an unprecedented flexibility in the 

representation of complex environments. In fact, the 

well-structured representation of the domain was the 

enabling factor for the conduction of the complex 
evidence based calibration processes to match the 

model with the measured data. Nevertheless, the direct 

adoption of the Modelica model in the MPC loop was 

impractical for three main reasons. First of all the size 

of the model demanded relatively large computational 

resources. Second, coupling such a large model with 

the sensor network required an impractical state 

estimation process.  Finally, the Modelica model did 

not provide support for the management of the 

uncertainty associated with the measured data in real-

time monitored environments. A model optimisation 
phase was therefore required, in which the Modelica 

station model was reduced to a significantly smaller 
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Bayesian Network model. The model reduction was 

conducted through statistical clustering 

methodologies. Hence, a comprehensive data set 

including all the possible operating condition under 

MPC was necessary. The generation of this data set 

was a second modelling issue of the SEAM4US 

project. A custom co-simulation environment, called 

Model-In-the-Loop (MIL) Figure 1 was developed. 

MIL has been implemented in Simulink, and uses the 

FMU technology to combine many Modelica models 

under the same Simulink control loop. Simulink acts 
as the master element of the co-simulation 

arrangement providing the control clock and a fixed 

simulation step to all the other subsystems.  

 

Figure 1. The Modelica Model-in-the-loop simulator 

The Modelica Station model, the Occupancy model 

and the Lighting model are included in Simulink as 
FMU co-simulation components. The Modelica 

station model is interfaced with a weather file of 

Barcelona that provides external weather parameters. 

The model receives as inputs the occupancy levels of 

each space of the station, the lighting level of the 

appliances in each space, and the fan control 

frequencies. It then outputs all the indoor 

environmental parameters and the fan energy 

consumption. These parameters are then fed-back to 

the controller as the input for the next control step. The 

Modelica Occupancy model, based on the Modelica 

bond graph library, simulates passenger flows and the 
occupancy distribution in the spaces inside the station. 

The passenger flow is simulated as a mass flow 

occurring among the station spaces. The mass sources 

are modulated by train arrivals and scheduled flow 

rates observed from the outside. Model calibration has 

been carried out through observations of the flow rates 

of passenger entering and exiting the trains and the 

station entrances at different hours of the days. The 

internal flow is then regulated through mass flow 

delays calculated based on typical transit speeds. The 

Modelica Lighting model regulates the lighting level 
adaptively in relation to the occupancy level of each 

station space. Hence, it receives occupancy levels and 

implements a reactive form of control that is driven by 

the illumination needs defined for each specific 

situation that may occur in the station environment. 

Since the outputs of the lighting control influence 

environmental and comfort conditions, these outputs 

are provided as inputs to the Modelica station model. 

The Ventilation controller is written in Matlab 

implementing different control logics. A random logic 

is used to generate the dataset for the model reduction 

phase. For the MPC implementation, a particle 

filtering policy was implemented. The controller 

randomly generates a number of different control 

options that are sent to the Bayesian Predictor, which 

estimates the environmental and energy consumption 

parameters. Then the controller ranks the predictor 

outcomes according to a cost function. The best 

performer is selected and used in the next control step. 
This brief description of the SEAM4US cease study 

showed how the Modelica modelling environment 

contributes to a large-scale model engineering 

application. The Modelica modelling technology 

provides key features and enabling factors at different 

levels. As a modelling language, it has the 

expressiveness and the efficiency to represent and 

simulate consistently end effectively large and 

complex domains. At system level, through the FMU 

technology, it can be effectively embedded into multi-

domain multi-platform co-simulation environments. 

Model-based FDD for District Cooling Systems 

The project aims to improve the way current Energy 

Management Systems (EMS) operate by extending 

their capabilities with optimization and fault detection 

techniques that are based on physics-based models 

that represent district cooling systems (DCS) and their 
components (e.g., chillers, pumps and cooling towers). 

The DCS object of this study is located at the US 

Naval Academy in Annapolis (MD). The system is 

characterized by a central loop where more than 20 

buildings utilize the chilled water (CHW) for air 

conditioning. The buildings are all different ranging 

from data centres, gyms, swimming pools and other 

facilities. The CHW is provided to the central loop by 

two separate plants located in different zones of the 

campus. Each plant has three centrifugal liquid 

chillers (with both single and double stage 

compressors) and four cooling towers. The project is 
still in progress and it will end in January 2016. 

This case study exemplifies of how simulation models 

that can be used during the design are reused during 

the operation thanks to the Functional Mock-Up 

Interface standard.  

Within the scope of this project (add citation) has been 

demonstrated that model-based state and parameter 

estimation techniques can be a viable solution to 

integrate FDD in system operations. However, in 

order to fully exploit the capabilities provided by the 

state estimation approaches the models used should be 
provided in a more standardized and suitable way, 

reducing the cost and effort for future 

implementations. In (Bonvini et al., 2014c) and 

(Bonvini et al., 2014b) it has been developed a 

methodology that allows state and parameter 

estimation techniques to work with models 

represented using the FMI standard. Figure 2 shows 
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the framework for model based fault detection that has 

been developed as part of this project.  

In the upper part of Figure 2, the designers can use 

Modelica based tools (or any simulation tool that can 

export models using the FMI standard, e.g. Matlab) to 

describe the design the system and evaluate its 

performances via simulation. Once the system has 

been designed and the system is operated it is possible 

to reuse the same models, or part of them, in 

conjunction with FDD algorithms. Thus, models are 

not simply used to design a better system but also to 
make sure it operates as expected minimizing its 

energy footprint.  

 

The cooling plant and its components have been 
modelled in Modelica using the Modelica Buildings 

library (Wetter et al., 2014). Since this is a 

demonstration project, the model was created after the 

system was built. The plant model incorporates the 

chillers, cooling towers, pumps, pipes and valves as 

well the control systems coordinating their operation. 

The component models have been calibrated using 

measurements gathered from the plant. The calibration 

has been performed using GenOpt (Wetter, 2004). In 

the case of the chillers, the measurements used to 

calibrate the models were the inlet and outlet 
temperature of the condenser and chilled water, the 

chilled and condenser mass flow rates, and the power 

consumption of the compressor. The parameters of the 

models have been calibrated in order to minimize the 

difference between the power consumption and the 

outlet water temperatures computed by the model with 

respect to the measured values. After the calibration 

process, the model has been exported as FMU and 

used by the FDD algorithm. 

The FDD algorithm uses the FMU model in the 

following way. The algorithm collects all the relevant 

data from the EMS. Then, the algorithm predicts the 

power consumption of the chiller and its coefficient of 

performance (COP) using the calibrated FMU model. 

In parallel, the FDD algorithm uses the same FMU 

model and estimates the COP and outlet temperatures 

using the observed measurements. This state and 

parameter estimation step computes a statistical 

description of the observed performance of the chiller 

based on its model. More details about the state and 

parameter estimation can be found in (Bonvini et al., 

2014a). The results of the state estimation algorithm 

are then compared to the results of the calibrated 
model. One of the advantages of this approach is that 

it provides a statistical description of the efficiency, 

thus allowing the selection fault thresholds based on 

probability (e.g., when the probability that the 

estimated COP exceeds the expected one is higher 

than 95% a fault is identified). The FDD algorithm is 

based on a python package called EstimationPy 

developed by the LBNL team. This package further 

extends PyFMI (Modelon AB, n.d.) to provide state 

and parameter estimation capabilities using models 

compliant with the FMI standard. The algorithm is 
part of a more comprehensive framework hosted on a 

web services infrastructure. The infrastructure is in 

charge of collecting the data from the EMS, pre-

process the data (e.g., fill possible gaps, remove 

inconsistencies, etc.), periodically execute the 

algorithm, store its results on a database and provide 

them to the users through a web-based dashboard. 

Hardware in-the-loop 

The study is being performed at the integrated 

building energy and control laboratory at The 

University of Alabama, Tuscaloosa, AL. A room 

served by a VAV terminal unit is the study object, 

where the room and VAV terminal unit are modelled 

in Modelica and downloaded to the HiL machine that 

is connected to a real VAV box controller. The 

objective of this case study is to research different 

control algorithms including fault tolerant controls for 

VAV boxes. This case study is still ongoing. 

Figure 3 shows a schematic of the connectivity of the 

controllers to the dSpace processor running a 

Modelica model. Control logic downloaded to the 

controllers communicates via A/D and D/A boards 

with the room and VAV box models constructed in 

Dymola.  

The VAV box with a reheat functionality is being 

modelled in Modelica using s heat exchanger and 

several dampers from the LBNL building library. This 

case study is using Dymola for Modelica and dSpace 

for HiL simulation. 

Sometimes compatibility issues have encountered 

between the building code for dSpace and the 

Dymola-to-Simulink interface. This only occurs with 

certain models, such as MixedAir from the LBNL 

building library, and we have not yet located the root 

cause of these issues. These models work fine in 

Simulink but return a Simstruct Mex error during code 

Figure 2. Model-based fault detection using state 
estimation techniques compliant with the FMI standard 

Proceedings of BS2015: 
14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.

- 359 -



generation. 

CONCLUSIONS 

A number of relevant modelling advantages and 

shortcomings concerning the application of Modelica 

to the model use during operations emerged in the 

development of these case studies. 

The Modelica component oriented language integrates 

in hybrid modelling processes. Several libraries are 

freely available for use in Modelica (e.g .(Baetens et 

al., 2012; Lauster et al., 2014; Nytsch-Geusen et al., 

2013; Wetter et al., 2014)). These can be modified 
and/or extended and be integrated with other libraries. 

The Modelica object-oriented approach allows for the 

development and the management of large and 

complex models. In such large-scale applications, the 

translators, the modelling language and environment 

are significantly stressed, and their robustness proved 

an enabling factor of the overall modelling process. 

This makes the Modelica toolchain well suited for 

handling highly complex models from the end user 

and the engineering perspective. 

Modelica allows for a seamless use of the models 

developed in the design phase during the operational 
phase, for example, by exporting models as FMUs. 

Finally, it is important to note that the advantages of 

Modelica can turn against the unexperienced 

developer. For example, because of the object-

orientation employed in many libraries, it can be 

difficult to predict the depth to which a change in one 

component can have an effect in other components in 

the library. However, regression tests as are setup for 

the Annex60 library can detect such unintended side 

effects. In addition, the current capabilities of 

Modelica IDEs are still developing means to provide 
better debugging information. Also, training is highly 

recommended for novice users as the type of model 

verification and debugging done in equation-based 

languages differs from what users may be accustomed 

to when writing procedural code. 
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